
Verilog-A

Language Reference Manual

Analog Extensions to Verilog HDL

Version 1.0

August 1, 1996

Open Verilog International

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior written approval of Open Verilog International.

Additional copies of this manual may be purchased by contacting Open Verilog International at the address
shown below.

Notices

The information contained in this draft manual represents the definition of the Verilog-A hardware description
language as proposed by OVI (Analog TSC) as of January, 1996. Open Verilog International makes no warran-
ties whatsoever with respect to the completeness, accuracy, or applicability of the information in this draft man-
ual to a user’s requirements. This language is not yet fully defined and is subject to change. It is suitable for
learning how to do analog modeling and as a vehicle for providing feedback to the standards committee. Verilog-
A should not be used for production design and development.

Open Verilog International reserves the right to make changes to the Verilog-A hardware description language
and this manual at any time without notice.

Open Verilog International does not endorse any particular simulator or other CAE tool that is based on the Ver-
ilog-A hardware description language.

Suggestions for improvements to the Verilog hardware description language and/or to this manual are welcome.
They should be sent to the address below.

Information about Open Verilog International and membership enrollment can be obtained by inquiring at the
address below.

Published as: Verilog-A Language Reference Manual
Version 1.0, August 1, 1996.

Published by: Open Verilog International
15466 Los Gatos Blvd., #109071
Los Gatos, CA 95032
Phone: (408) 358-9510
Fax: (408) 358-3910

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.

The following people contributed to the creation, editing and review of this document.

Ramana Aisola Motorola aisola@analog-dse.sps.mot.com

Kevin Cameron Meta-Software kevinc@metasw.com

Dan FitzPatrick Apteq dkf@apteq.com

Vassilios Gerousis Motorola gerousis@chdasic.sps.mot.com

Ian Getreu Analogy iang@analogy.com

Kim Hailey Meta Software kimh@metasw.com

Ken Kundert Cadence kundert@cadence.com

Oskar Leuthold GEC Plessy leuthold@sv.gpsemi.com

S. Peter Liebmann Meta Software peterl@metasw.com

Ira Miller Motorola miller@analog-dse.sps.mot.com

Tom Reeder Viewlogic treeder@viewlogic.com

Steffen Rochel Anacad/Mentor steffen_rochel@mentorg.com

James Spoto Cadence spoto@cadence.com

Richard Trihy Cadence trihy@cadence.com

Yatin Trivedi SEVA Technologies trivedi@seva.com

Alex Zamfirescu Veribest a.zamfirescu@ieee.org

Version 1.0 Verilog-A Language Reference Manual v

Table of Contents

Verilog-A HDL Overview

Overview ... 1-1

Systems ... 1-1

Conservative systems .. 1-2

Kirchhoff’s laws .. 1-3

Signal-flow systems .. 1-4

Mixed systems .. 1-5

Natures, disciplines and nodes .. 1-7

Conventions used in this document .. 1-8

Contents .. 1-9

Lexical Tokens

Lexical tokens ... 2-1

White space ... 2-1

Comments ... 2-1

Operators ... 2-2

Numbers .. 2-2

Integer constants ... 2-2

Real constants ... 2-3

Units for real constants ... 2-4

Conversion .. 2-4

Identifiers, keywords, and system names ... 2-5

Escaped identifiers .. 2-5

Keywords .. 2-5

Version 1.0 Verilog-A Language Reference Manual vi

System tasks and functions ... 2-7

Compiler directives ... 2-7

Data Types

Integer and real datatypes ... 3-1

Operators and real numbers .. 3-2

Conversion .. 3-2

Parameters ... 3-2

Type Specification .. 3-4

Value Range Specification .. 3-4

Nodes .. 3-5

Natures .. 3-5

Disciplines ... 3-9

Node Declaration .. 3-11

Implicit Nodes ... 3-13

Node Compatibility ... 3-13

Branches .. 3-15

Branch Declaration ... 3-15

Accessing Node and branch Signals and Attributes 3-16

Namespace .. 3-17

Nature and Discipline ... 3-17

Node .. 3-17

Branch ... 3-18

Expressions

Operators ... 4-1

Operators with real operands .. 4-2

Binary operator precedence .. 4-2

Expression evaluation order .. 4-3

Arithmetic operators ... 4-4

Relational operators .. 4-4

Equality operators ... 4-5

Logical operators .. 4-5

Version 1.0 Verilog-A Language Reference Manual vii

Bit-wise operators ... 4-6

Shift operators ... 4-7

Conditional operator ... 4-7

Event or ... 4-7

Built-In Mathematical Functions .. 4-7

Standard Mathematical Functions ... 4-8

Transcendental Functions ... 4-8

Environment Parameters ... 4-9

Error Handling .. 4-9

Signal Access Functions ... 4-9

Analog Operators .. 4-10

Restrictions on analog operators ... 4-11

Analog Operators and Tolerances ... 4-11

Time Derivative Operator ... 4-11

Time Integral Operator ... 4-12

Delay Operator .. 4-13

Transition Filter .. 4-13

Slew Filter ... 4-16

Laplace Transform Filters ... 4-17

Z-Transform Filters ... 4-19

Limited Exponential .. 4-22

Analysis Dependent Functions ... 4-22

Analysis ... 4-22

AC Stimulus .. 4-23

Noise ... 4-24

User defined functions .. 4-25

Defining a function ... 4-25

Returning a value from a function .. 4-27

Calling a function .. 4-27

Signals

Analog Signals .. 5-1

Access Functions .. 5-1

Probes and Sources ... 5-2

Version 1.0 Verilog-A Language Reference Manual viii

Examples ... 5-3

Port Branches .. 5-6

Switch Branches .. 5-7

Unassigned Sources .. 5-8

Contribution statements .. 5-8

Branch Contribution Statements ... 5-8

Indirect Branch Assignments .. 5-9

Analog Behavior

Analog procedural block ... 6-1

Null statement ... 6-2

Block statement ... 6-2

Block names .. 6-3

Procedural assignment .. 6-3

Conditional statement ... 6-4

If-else-if Construct .. 6-5

Case statement .. 6-5

Constant expression in case statement .. 6-6

Looping statements ... 6-6

Generate statement .. 6-7

Analog events .. 6-8

Event detection .. 6-9

Event OR operator .. 6-9

Global events .. 6-10

Monitored events .. 6-11

Announcing Discontinuity .. 6-13

Time related functions .. 6-15

Bounding the time step ... 6-15

Last_Crossing Function .. 6-16

Hierarchical Structures

Modules ... 7-1

Top-level modules .. 7-2

Version 1.0 Verilog-A Language Reference Manual ix

Module instantiation ... 7-3

Overriding module parameter values .. 7-5

Defparam statement .. 7-5

Module instance parameter value assignment by order 7-6

Module instance parameter value assignment by name 7-7

Parameter override precedence ... 7-7

Parameter dependence .. 7-8

Ports .. 7-8

Port association ... 7-8

Port declarations .. 7-9

Connecting module ports by ordered list 7-10

Connecting module ports by name ... 7-11

Port connection rules ... 7-11

Inheriting Port Natures .. 7-12

Multi-disciplinary example ... 7-12

Hierarchical names .. 7-13

Scope rules .. 7-15

Scheduling Semantics

Open Issues

Syntax

Keywords

System Tasks and Functions

Compiler Directives

Standard Definitions

Glossary

Index

Version 1.0 Verilog-A Language Reference Manual x

Version 1.0 Verilog-A Language Reference Manual 1-1

Overview Verilog-A HDL Overview

Section 1

Verilog-A HDL Overview

1.1 Overview

This Verilog-A Hardware Description Language (HDL) language reference manual
defines a behavioral language for analog systems. Verilog-A HDL is derived from the
IEEE 1364 Verilog HDL specification. This document is intended to cover the definition
and semantics of Verilog-A HDL as proposed by Open Verilog International (OVI).

The intent of Verilog-A HDL is to let designers of analog systems and integrated circuits
create and use modules that encapsulate high-level behavioral descriptions as well as
structural descriptions of systems and components. The behavior of each module can be
described mathematically in terms of its terminals and external parameters applied to the
module. The structure of each component can be described in terms of interconnected
sub-components. These descriptions can be used in many disciplines such as electrical,
mechanical, fluid dynamics, and thermodynamics.

Verilog-A HDL is defined to be applicable to both electrical and non-electrical systems
description. It supportsconservative andsignal-flow descriptions by using the
terminology for these descriptions using the concepts ofnodes, branches, andports. The
solution of analog behaviors which obey the laws of conservation fall within the
generalized form of Kirchhoff’s Potential and Flow laws (KPL and KFL). Both of these
are defined in terms of the quantities associated with the analog behaviors.

1.2 Systems

A system is considered to be a collection of interconnectedcomponents that are acted
upon by a stimulus and produce a response. The components themselves might also be
systems, in which case a hierarchical system is defined. If a component does not have
any sub-components, then it is considered a primitive component. Each primitive
component connects to one or more nodes. The behavior of each component is defined
in terms of signal values at each node.

The components connect to nodes through ports to build hierarchy as shown in
figure 1-1.

Version 1.0 Verilog-A Language Reference Manual 1-2

Systems Verilog-A HDL Overview

Figure 1-1: Components connect to nodes through ports.

In order to simulate systems, it is necessary to have a complete description of the system
and all of its components. Descriptions of systems are given structurally. That is, the
description of a system contains instances of components and how they are
interconnected. Descriptions of primitive components are given behaviorally. That is, a
mathematical description is given that relates the signals at the ports of the component.

1.2.1 Conservative systems

An important characteristic of conservative systems is that there are two values
associated with every node (and hence every terminal) - the potential (also known as the
across value, or the voltage in electrical systems) and the flow (the through value, or the
current in electrical systems). The potential of the node is shared with all terminals
connected to the node in such a way that all terminals see the same potential. The flow
is shared such that flow from all terminals at a node must sum to zero. In this way, the
node acts as an infinitesimal point of interconnection in which the potential is the same
everywhere on the node and on which no flow can accumulate. Thus, the node embodies
Kirchhoff's Potential and Flow Laws (KPL and KFL). When a component connects to a
node through a conservative terminal, it may either affect, or be affected by, either the
potential at the node, and/or the flow onto the node through the terminal.

With conservative systems it is also useful to define the concept of a branch. A branch
is a path of flow between two nodes through a component. Every branch has an
associated potential (the potential difference between the two nodes) and flow.

A behavioral description of a conservative component is constructed as a collection of
interconnected branches. The constitutive equations of the component are formulated as
to relate the branch potentials and flows. In the probe/source approach, the branch
potential or flow is specified as a function of branch potentials and flows. If the branch
potential and flow are left unspecified, then the branch acts as a probe. In this case, if the
branch flow is used in an expression, the branch potential is forced to zero. Otherwise
the branch flow is assumed to be zero and the branch potential is available for use in an
expression. Using both the potential and flow of a 'probe' branch in an expression is not

Module Module

Module

Node

Ports

Version 1.0 Verilog-A Language Reference Manual 1-3

Systems Verilog-A HDL Overview

allowed. Nor is specifying both the branch potential and flow at the same time. (While
these last two conditions are not really necessary, they do eliminate conditions that are
useless and confusing.)

1.2.1.1 Reference nodes

The potential of a single node is given with respect to a reference node. The potential of
the reference node, which is calledground in electrical systems, is always zero.

1.2.1.2 Reference directions

The reference directions for a generic branch are as follows.

Figure 1-2: Reference directions

The reference direction for a potential is indicated by the plus and minus symbols near
each terminal. Given the chosen reference direction, the branch potential is positive
whenever the potential of the terminal marked with a plus sign (A) is larger than the
potential of the terminal marked with a minus sign (B). Similarly, the flow is positive
whenever it moves in the direction of the arrow (in this case from+ to -).

Verilog-A HDL uses associated reference directions. A positive flow enters a branch
through the terminal marked with the plus sign and exits the branch through the terminal
marked with the minus sign.

1.2.2 Kirchhoff’s laws

In formulating system equations, Verilog-A HDL uses two sets of relationships. The first
are the constitutive relationships that describe the behavior of each component.
Constitutive relationships can be kept inside the simulator as built-in primitives, or they
can be provided by Verilog-A HDL module definitions.

The second set of relationships, interconnection relationships, describe the structure of
the network. Interconnection relationships, which contain information on how the
components are connected to each other, are only a function of the system topology.
They are independent of the nature of the components.

The Verilog-A HDL simulator uses Kirchhoff’s laws to define the relationships between
the nodes and the branches. Kirchhoff’s laws are typically associated with electrical
circuits that relate voltages and currents. However, by generalizing the concepts of

A B

flow
+ potential -

Version 1.0 Verilog-A Language Reference Manual 1-4

Systems Verilog-A HDL Overview

voltages and currents to potentials and flows, Kirchhoff’s laws can be used to formulate
interconnection relationships for any type of system.

Kirchhoff’s laws provide the following properties relating the quantities present on
nodes and branches.

■ Kirchhoff's Flow Law (KFL)
The algebraic sum of all flows out of a node at any instant is zero.

■ Kirchhoff's Potential Law (KPL)
The algebraic sum of all the branch potentials around a loop at any instant is zero.

.

Figure 1-3: Kirchhoff’s Flow Law (KFL) and Potential Law (KPL)

These laws imply that a node is infinitely small so that there is negligible difference in
potential between any two points on the node and a negligible accumulation of flow.

1.2.3 Signal-flow systems

Unlike conservative systems, signal-flow systems only have one potential associated
with every node. As a result, a signal-flow terminal must be unidirectional. It may either
read the potential of the node, or it may specify it. Signal-flow terminals are either
considered input ports if they pass the potential of the node into a component, or output
ports if they specify the potential of a node.

Signal-flow terminals support a subset of the functionality of conservative terminals. As
such, one can always use conservative semantics to represent signal-flow components.

flow +
potential

-

flow

+
potential
-

+
-

+ -
potential

+ -
potential

+
-

+
-

po
te

nt
ia

l

po
te

nt
ia

l

po
te

nt
ia

l

flo
w

KFL KPL

flow1 + flow2 + flow3 = 0
-potential1 -potential2
+potential3 + potential4 = 0

Version 1.0 Verilog-A Language Reference Manual 1-5

Systems Verilog-A HDL Overview

There are, however, two important benefits that result from allowing direct description
of signal-flow components using signal-flow semantics. First, one only need declare the
types of signals that one intends to use. Conversely, one need not declare the types of
signals that are not used and therefore for which one would have no basis upon which to
make a choice of what the signal type should be. Second, signal-flow semantics require
a smaller number of equations and unknowns, and so results in a formulation that is more
efficient to simulate.

There are some restrictions that are typically present in signal-flow formulations. For
example,

■ Typically, one cannot directly interface signal-flow and conservative
components.

■ Typically, signals are potential-like, making it difficult to represent flow-like
signals.

■ Typically, components descriptions can only be written in terms of ground-
referred signals, making it difficult to write descriptions of components that use
floating or differential signals.

1.2.4 Mixed systems

When practicing the top-down design style, it is extremely useful to mix conservative
and signal-flow components in the same system. Users typically use signal-flow models
early in the design cycle when the system is described in abstract terms, and gradually
convert component models to conservative form as the design progresses. Thus, it is
important to be able to initially describe a component using a signal-flow model, and
later convert it to a conservative model, with a minimum of fuss. It is also important to
allow conservative and signal-flow components to be arbitrarily mixed in the same
system.

The approach taken is to write component descriptions using conservative semantics,
except that terminal and node declarations will only require types for those values that
are actually used in the description. Thus, signal-flow terminals will only require the type
of one potential to be specified (typically the potential, but could alternatively be the
flow), whereas conservative terminals would require types for both values (the potential
and flow). For example, consider a differential voltage amplifier, a differential current
amplifier, and a resistor. The amplifiers are written using signal-flow terminals and the
resistor uses conservative terminals. These examples are meant to illustrate conceptual
points only, and are not complete descriptions of the model.

Version 1.0 Verilog-A Language Reference Manual 1-6

Systems Verilog-A HDL Overview

In this case, only the voltage on the terminals are declared because only voltage is used
in the body of the model.

Here, only current is used in the body of the model, so only current need be declared at
the terminals.

module voltage_amplifier (out, in) ;
input in ;
output out ;
voltage out , // Discipline voltage defined elsewhere

in ; // with potential access function V()
parameter real GAIN_V = 10.0 ;

analog
V(out) <+ GAIN_V * V(in) ;

endmodule

module current_amplifier (out, in) ;
input in ;
output out ;
current out , // Discipline current defined elsewhere

in ; // with flow access function I()
parameter real GAIN_I = 10.0 ;

analog
I(out) <+ GAIN_I * I(in) ;

endmodule

module resistor (a, b) ;
inout a, b ;
electrical a, b ; // access functions are V() and I()
parameter real R = 1.0 ;

analog
V(a,b) <+ R * I(a,b) ;

endmodule

Version 1.0 Verilog-A Language Reference Manual 1-7

Systems Verilog-A HDL Overview

The description of the resistor relates both the voltage and current on the terminals, so
both must be declared.

In summary, only those signals types declared on the terminals are accessible in the body
of the model. Conversely, only those signals types used in the body need be declared.

This approach provides all of the power of the conservative formulation for both signal-
flow and conservative terminals, without forcing types to be declared for unused signals
on signal-flow nodes and terminals. In this way, the first benefit of the traditional signal-
flow formulation is provided without the restrictions. The second benefit, that of a
smaller, more efficient, set of equations to solve, is provided in a manner that is hidden
from the user. The simulator begins by treating all terminals as being conservative,
which will allow the connection of signal-flow and conservative terminals. This results
in additional unnecessary equations for those nodes that only have signal-flow terminals.
This situation can be recognized by the simulator and those equations eliminated.

Thus, this approach to allowing mixed conservative/signal-flow descriptions provides
the following benefits:

■ Conservative components and signal-flow components can be freely mixed. In
addition, signal-flow components can be converted to conservative components,
and vice versa, by modifying only the component behavioral description.

■ Many of the capabilities of conservative terminals, such as the ability to access
flow and the ability to access floating potentials, are available with signal-flow
terminals.

■ Signal-types only have to be given for potentials and flows if they are accessed
in a behavioral description.

■ If nodes and terminals are used only in a structural description (only in instance
statements), then no signal-types need be specified.

1.2.5 Natures, disciplines and nodes

Verilog-A HDL allows definition of nodes based on disciplines. The disciplines
associate potential and flow natures for conservative systems or only potential nature for
signal-flow systems. The natures are a collection of attributes, including user defined
attributes, that describes the units (meter, gram, newton, etc.), absolute tolerance for
convergence, and the names of potential and flow access functions.

The disciplines and natures can be shared by many nodes. The compatibility rules help
enforce the legal operations between nodes of different disciplines.

Version 1.0 Verilog-A Language Reference Manual 1-8

Conventions used in this document Verilog-A HDL Overview

1.3 Conventions used in this document

This document is organized into sections, each of which focuses on some specific area
of the language. There are subsections within each section to discuss with individual
constructs and concepts. The discussion begins with an introduction and an optional
rationale for the construct or the concept, followed by syntax and semantic description,
followed by some examples and notes.

The formal syntax of Verilog HDL is described using Backus-Naur Form (BNF). The
following conventions are used:

1. Lower case words, some containing embedded underscores, are used to denote
syntactic categories, for example:

module_declaration

2. Bold face words are used to denote reserved keywords, operators and
punctuation marks as required part of the syntax. For example:

module = ;

3. A vertical bar separates alternative items. For example:

attribute ::=
abstol | units | identifier

4. Square brackets enclose optional items. For example:

input_declaration ::= input [range] list_of_ports ;

5. Braces enclose a repeated item unless it appears in bold face, in which case it
stands for itself. The item may appear zero or more times; the repetitions occur
from left to right as with an equivalent left-recursive rule. Thus, the following
two rules are equivalent:

list_of_port_def ::= port_def { , port_def }

list_of_port_def ::=
port_def

| list_of_port_def , port_def

6. If the name of any category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to
convey some semantic information. For example,msb_constant_expression and
lsb_constant_expression are equivalent to constant_expression, and
node_identifier is an identifier that is used to identify (declare or reference) a
node.

The main text usesitalicized font when a term is being defined, andconstant-width
font for examples, file names, and while referring to constants.

Version 1.0 Verilog-A Language Reference Manual 1-9

Contents Verilog-A HDL Overview

1.4 Contents

This document contains the following chapters:

1. Verilog-A HDL Overview
This section gives the overview of analog modeling, basic concepts, and
describes Kirchhoff’s Potential and Flow Laws.

2. Lexical Tokens
This section lexical tokens used in Verilog-A HDL.

3. Data Types
This section describes the data types - integer, real, parameter, nature, discipline,
and node - as used in Verilog-A HDL descriptions.

4. Expressions
This section describes expressions, mathematical functions, and time domain
functions used in Verilog-A HDL.

5. Signals
This section describes signals and branches, access to signals and branches, and
various transformation functions.

6. Analog Behavior
This section describes the basic analog block and procedural language constructs
available in Verilog-A HDL for behavioral modeling.

7. Hierarchical Structures
This section describes how to build hierarchical descriptions using Verilog-A
HDL.

A. Scheduling Semantics
This annex describes the basic simulation cycle as applicable to Verilog-A HDL.

B. Open Issues
This annex lists the open issues known to the working group.

C. Syntax
This annex describes formal syntax for all Verilog-A HDL constructs in Bachus-
Naur Form (BNF).

D. Keywords
This annex lists all the words that are recognized in Verilog-A HDL as keywords.

E. System Tasks and Functions
This annex describes all system tasks and functions in Verilog-A HDL.

F. Compiler Directives
This annex describes all compiler directives in Verilog-A HDL.

Version 1.0 Verilog-A Language Reference Manual 1-10

Contents Verilog-A HDL Overview

G. Standard Definitions
This annex provides definitions of several natures, disciplines and constants
useful writing models in Verilog-A HDL.

H. Glossary
This annex describes various terms used in this document.

Version 1.0 Verilog-A Language Reference Manual 2-1

Lexical tokens Lexical Tokens

Section 2

Lexical Tokens

This section describes the lexical tokens used in Verilog HDL source text and their
conventions.

2.1 Lexical tokens

Verilog HDL source text files is a stream of lexical tokens. Alexical token consists of
one or more characters. The layout of tokens in a source file is free format—that is,
spaces and newlines are not syntactically significant other than being token separators,
except escaped identifiers (Section 2.6.1).

The types of lexical tokens in the language are as follows:

- white space
- comment
- operator
- number
- string
- identifier
- keyword

2.2 White space

White space contain the characters for spaces, tabs, newlines, and formfeeds. These
characters are ignored except when they serve to separate other lexical tokens.

2.3 Comments

The Verilog HDL has two forms to introduce comments. Aone-line comment starts with
the two characters// and ends with a newline. Ablock comment starts with /* and
ends with*/ . Block comments can not be nested. The one-line comment token// does
not have any special meaning in a block comment.

Version 1.0 Verilog-A Language Reference Manual 2-2

Operators Lexical Tokens

2.4 Operators

Operators are single, double, or triple character sequences and are used in expressions.
Section 4 discusses the use of operators in expressions.

Unary operators appear to the left of their operand.Binary operators appear between
their operands. Aconditional operator has two operator characters that separate three
operands.

2.5 Numbers

Constant numbers can be specified as integer constants or real constants. The syntax for
constants is as shown below:

Figure 2-1: Syntax for integer and real constants

2.5.1 Integer constants

Integer constants are specified in decimal format as a sequence of digits0 through9,
optionally starting with a plus or minus unary operator. The underscore character (_) is
legal anywhere in a decimal number except as the first character. The underscore

number ::=
decimal_number

| real_number

decimal_number ::=
[sign] unsigned_num

real_number ::=
[sign] unsigned_num . unsigned_num

| [sign] unsigned_num [. unsigned_num] e [sign] unsigned_num
| [sign] unsigned_num [. unsigned_num] E [sign] unsigned_num
| [sign] unsigned_num [. unsigned_num] unit_letter

sign ::=
+ | -

unsigned_num ::=
decimal_digit { _ | decimal_digit }

decimal_digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

unit_letter ::=
T | G | M | K | m | u | n | p | f | a

Version 1.0 Verilog-A Language Reference Manual 2-3

Numbers Lexical Tokens

character is ignored. This feature can be used to break up long numbers for readability
purposes.

Examples:

27_195_000 // same as 27195000
-659

2.5.2 Real constants

Thereal constant numbers are represented as described by IEEE STD-754-1985, an
IEEE standard for double precision floating point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in
scientific notation (for example, 39e8, which indicates 39 multiplied by 10 to the 8th
power). Real numbers expressed with a decimal point have at least one digit on each side
of the decimal point.

Examples:

1.2
0.1
2394.26331
1.2E12 (the exponent symbol can be e or E)
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one
digit on each side of the decimal point:

.12
9.
4.E3
.2e-7

Version 1.0 Verilog-A Language Reference Manual 2-4

Numbers Lexical Tokens

2.5.3 Units for real constants

The floating-point numbers can be specified with the following letter symbols for the
scale factors indicated.

Figure 2-2: Symbols used as multipliers to numbers

No space is permitted between the number and the symbol.

This form of floating-point number specification is provided in Verilog-A HDL in
addition to the two methods for writing floating-point numbers described earlier.

Example:

2.5.4 Conversion

Real numbers are converted to integers by rounding the real number to the nearest
integer, rather than by truncating it. Implicit conversion take place when a real number
is assigned to an integer. The ties are rounded away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when
converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to
integer yields 2.

m = 10-3

T = 1012 u = 10-6

G = 109 n = 10-9

M = 106 p = 10-12

K = 103 f = 10-15

a = 10-18

Short
form

Expanded form

1.3u 1.3e-6 or 0.0000013

5.46K 5460

Version 1.0 Verilog-A Language Reference Manual 2-5

Identifiers, keywords, and system names Lexical Tokens

2.6 Identifiers, keywords, and system names

An identifier is used to give an object a unique name so it can be referenced. An identifier
can be any sequence of letters, digits, dollar signs ($), and the underscore characters (_).

The first character of an identifier can not be a digit or$; it can be a letter or an
underscore. Identifiers are case sensitive.

Examples:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3
n$657

2.6.1 Escaped identifiers

Escaped identifiers start with the backslash character (\) and end with white space
(space, tab, newline). They provide a means of including any of the printable ASCII
characters in an identifier (the decimal values 33 through 126, or 21 through 7E in
hexadecimal).

Neither the leading back-slash character nor the terminating white space is considered to
be part of the identifier. Therefore, an escaped identifier\cpu3 is treated the same as a
non-escaped identifiercpu3 .

Examples:

\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)

2.6.2 Keywords

Keywords are predefined non-escaped identifiers that are used to define the language
constructs. A Verilog HDL keyword preceded by an escape character is not interpreted
as a keyword.

All keywords are defined in lowercase only. Annex D gives a list of all defined
keywords.

Version 1.0 Verilog-A Language Reference Manual 2-6

Identifiers, keywords, and system names Lexical Tokens

2.6.2.1 Verilog-A Keywords

In addition to the keywords within Verilog HDL, the following are additional keywords
used by Verilog-A HDL.

Figure 2-3: List of additional keywords

2.6.2.2 Math Function Keywords

The following are reserved keywords used by the math library.

Figure 2-4: List of keywords for math library

2.6.2.3 Built-in functions

The following are reserved keywords for all built-in functions. The functions are
described later in appropriate sections of this document.

Figure 2-5: List of built-in functions

abstol discipline from nature

access enddiscipline generate potential

analog endnature ground units

branch exclude idt_nature

ddt_nature flow inf

abs asin atanh cosh ln min sinh tanh

acos asinh atan2 exp log pow sqrt

acosh atan cos hypot max sin tan

ac_stim delay initial_step last_crossing white_noise

analysis discontinuity laplace_nd noise_table zi_nd

bound_step final_step laplace_np slew zi_np

cross flicker_noise laplace_zd timer zi_zd

ddt idt laplace_zp transition zi_zp

Version 1.0 Verilog-A Language Reference Manual 2-7

Identifiers, keywords, and system names Lexical Tokens

2.6.3 System tasks and functions

The$ character introduces a language construct that enables development of user-
defined tasks and functions. A name following the$ is interpreted as asystem task or a
system function.

The syntax for a system task or function is as follows:

Figure 2-6: : Syntax for system tasks and functions

Any valid identifier, including keywords already in use in contexts other than this
construct can be used as a system task or function name.

Examples:

$display ("display a message");
$finish;

2.6.4 Compiler directives

The` character (the ASCII value 60, called open quote or accent grave) introduces a
language construct used to implement compiler directives. The compiler behavior
dictated by a compiler directive takes effect as soon as the compiler reads the directive.
The directive remains in effect for the rest of the compilation unless a different compiler
directive specifies otherwise. A compiler directive in one description file can therefore
control compilation behavior in multiple description files.

Any valid identifier, including keywords already in use in contexts other than this
construct can be used as a compiler directive name.

Example:

`define wordsize 8

system_task_or_function ::=
$system_task_ identifier [(list_of_arguments)] ;

| $system_function_ identifier [(list_of_arguments)] ;

list_of_arguments ::=
 argument { , [argument] }

argument ::=
expression

Version 1.0 Verilog-A Language Reference Manual 2-8

Identifiers, keywords, and system names Lexical Tokens

Version 1.0 Verilog-A Language Reference Manual 3-1

Integer and real datatypes Data Types

Section 3

Data Types

Verilog-A HDL supports integer, real, and parameter data types as found in Verilog
HDL. It also modifies the parameter data types and introduces array of real as an
extension of real data type.

Verilog-A HDL introduces a new data type, called node, for representing analog signals.
The nodes have disciplines that define the natures of potential and flow and associated
attributes.

3.1 Integer and real datatypes

The syntax for declaringinteger andreal is as follows:

Figure 3-1: Syntax for integer and real declarations

An integer declaration declares one or more variables of type integer. These variables
can hold values ranging from -231 to 231-1. Array of integers can be declared using a
range that defines the upper and lower indices of the array. Both indices must be constant
expressions and must evaluate to a positive integer, a negative integer, or zero.

Arithmetic operations performed on integer variables produce 2’s complement results.

A real declaration declares one or more variables of type real. The real variables are
stored as 64 bit quantities, and store the real values as described by IEEE STD-754-1985.

integer_declaration ::=
integer list_of_identifiers ;

real_declaration ::=
real list_of_identifiers ;

list_of_identifiers ::=
var_name { , var_name }

var_name ::=
variable _identifier

| array _identifier [range]

range ::=
upper_limit _constant_expression : lower_limit _constant_expression

Version 1.0 Verilog-A Language Reference Manual 3-2

Parameters Data Types

Array of real can be declared using a range that defines the upper and lower indices of
the array. Both indices must be constant expressions and must evaluate to a positive
integer, a negative integer, or zero.

Both integer and real variables are initialized to zero at the start of the simulation.

Examples:

integer a[1:64]; // an array of 64 integer values

real float ; // a variable to store real value

real gain_factor[1:30] ;// array of 30 gain multipliers
 // with floating point values

3.1.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real variables is a
single-bit scalar value. Not all Verilog-A HDL operators can be used with expressions
involving real numbers and real variables.

3.1.2 Conversion

The value of a real variable is converted to an integer by rounding the real number to the
nearest integer, rather than by truncating it. Implicit conversion takes place when a real
number is assigned to an integer. The ties are rounded away from zero.

3.2 Parameters

The syntax for parameter declarations is as follows:

Version 1.0 Verilog-A Language Reference Manual 3-3

Parameters Data Types

Figure 3-2: : Syntax for parameter declaration

The list of parameter assignments must be a comma-separated list of assignments, where
the right hand side of the assignment must be a constant expression, that is, an expression
containing only constant numbers and previously defined parameters.

Parameters represent constants, hence it is illegal to modify their value at runtime.
However, parameters can be modified at compilation time to have values that are
different from those specified in the declaration assignment. This allows customization
of module instances. A parameter can be modified with thedefparam statement, or in
the module instance statement.

By nature, analog behavioral specifications are characterized more extensively in terms
of parameters than their digital counterparts. There are two fundamental extensions to
parameter declarations:

parameter_declaration ::=
parameter [opt_type] list_of_param_assignments ;

opt_type ::=
real

| integer

list_of_param_assignments ::=
declarator_init

| list_of_param_assignments , declarator_init

declarator_init ::=
parameter _identifier = constant_expression opt_range*

opt_range ::=
from range_specifier

| exclude range_specifier
| exclude constant_expression

range_specifier ::=
start_paren expression1 : expression2 end_paren

start_paren ::=
[

| (

end_paren ::=
]

|)

expression1 ::=
constant_expression | -inf

expression2 ::=
constant_expression | inf

Version 1.0 Verilog-A Language Reference Manual 3-4

Parameters Data Types

■ An optional type for the parameter can be specified in Verilog-A HDL. In IEEE
1364, the type of a parameter defaults to the type of the default expression.

■ A range of permissible values can be defined for each parameter. In IEEE 1364,
this check had to be done in user model or was left as an implementation specific
detail.

3.2.1 Type Specification

The parameter declaration can contain an optional type specification. In this sense, the
parameter keyword acts more as a type qualifier than a type specifier. A default value for
the parameter must be specified.

The following examples illustrate this concept:

parameter real slew_rate = 1e-3 ;
parameter integer size = 16 ;

If the type of a parameter is not specified, it is derived from the type of the value of the
constant expression.

If the type of the parameter is specified, and the value assigned to the parameter conflicts
with the type of the parameter, the value is coerced to the type of the parameter. For
example,

parameter real size = 10 ;

Here,size will be coerced to10.0 .

3.2.2 Value Range Specification

The parameter declaration can contain optional specifications of the permissible range
of the values of a parameter. More than one range may be specified for inclusion or
exclusion of values as legal values for the parameter.

The use of brackets,[and] , indicate inclusion of the end points in the valid range. The
use of parenthesis,(and) , indicate exclusion of the end points from the valid range. It
is possible to include one end point and not the other using [) and(] . The first
expression in the range must be numerically smaller than the second expression in the
range

For example,

parameter real neg_rail = -15 from [-50:0) ;
parameter integer pos_rail = 15 from (0:50) ;
parameter real gain = 1 from [1:1000] ;

Here, the parameterneg_rail is given a default value of-15 and only allowed to
acquire values within the range of-50 <= neg_rail < 0 . Similarly, for parameter
pos_rail , the default value is15 and it is only allowed to acquire values within the range

Version 1.0 Verilog-A Language Reference Manual 3-5

Nodes Data Types

of 0 < pos_rail < 50 . For parametergain, the default value is 1 and it is allowed to
acquire values within the range of1<= gain <= 1000 .

The keywordinf may be used to indicate infinity. If preceded by a negative sign, it
indicates negative infinity. For example,

parameter real val3=0 from [0:inf) exclude (10:20) exclude (30:40] ;

A single value may be excluded from the possible valid values for a parameter. For
example,

parameter real res = 1.0 exclude 0 ;

The value of a parameter is checked against the range only at the model build time (also
called compile time or link time for different applications), and is not a runtime assertion
check.

3.3 Nodes

In addition to the data types supported by IEEE 1364, for continuous time simulation an
additional data type,node, is introduced in Verilog-A. The fundamental characteristic of
a node data type is that the values of a node are defined by simultaneous solution of
equations defined by the instances connected to thenode using Kirchoff’s conservation
laws. In general, a node represents a point of physical connections between entities of
continuous-time description, obeying conservation-law semantics.

A node is characterized by thediscipline it follows. For example, all low-voltage nodes
have certain common characteristics, all mechanical nodes have certain characteristics,
etc. Therefore, a node is always declared as a type of discipline. In this sense, a discipline
is a user defined type for declaring a node.

A discipline is characterized by the attributes defined innatures for potential and flow.

3.3.1 Natures

The natures are a collection of attributes. In Verilog-A HDL, there are several pre-
defined attributes. In addition, user-defined attributes may be declared and assigned
constant values in a nature.

The nature declarations are at the same level as discipline and module declarations in the
source text. That is, natures are declared at the top level, and nature declarations do not
nest inside other nature declarations, discipline declarations, or module declarations.

The syntax for defining a nature is as follows:

Version 1.0 Verilog-A Language Reference Manual 3-6

Nodes Data Types

Figure 3-3: Syntax for nature declaration

A nature must be defined between the keywordsnature andendnature . Each nature
definition must have a unique identifier as the name of the nature, and must include all
the required attributes.

For example,

nature current
units = "A" ;
access = I ;
idt_nature = charge ;
abstol = 1u ;

endnature

nature voltage
units = "V" ;
access = V;

endnature

nature_declaration ::=
nature nature_name

[nature_descriptions]
endnature

nature_name ::=
nature _identifier

| nature _identifier : parent _identifier

parent_identifier ::=
nature _identifier

| discipline _identifier .flow
| discipline _identifier .potential

nature_descriptions ::=
nature_description

| nature_description nature_descriptions

nature_description ::=
attribute = constant_expression ;

attribute ::=
abstol

| access
| ddt_nature
| idt_nature
| units
| identifier

Version 1.0 Verilog-A Language Reference Manual 3-7

Nodes Data Types

3.3.1.1 Derived Natures

A nature may be derived from an already declared nature. This allows the new nature to
have the same attributes as the attributes for the other nature. The new nature is called a
derived nature, and the existing nature is called aparent nature. If a nature is not derived
from any other nature, then it is called abase nature.

In order to derive a new nature from an existing nature, the new nature name should be
followed by a colon (:) and the name of the parent nature in the nature definition.

A derived nature may declare additional attributes, or override values of the attributes
already declared in the parent nature, with certain restrictions (as outlined in
section 3.3.1.2) for the predefined attributes.

The attributes of the derived nature are accessed in the same manner as accessing
attributes of any other nature.

For example,

nature ttl_curr
units = "A" ;
access = I ;
abstol = 1u ;

endnature

// An alias

nature ttl_node_curr : ttl_curr
endnature

nature new_curr : ttl_curr // derived, but different
abstol = 1m ; // modified for this nature
max = 12.3 ; // new attribute for this nature

endnature

3.3.1.2 Attributes

Attributes define the value of certain quantities that characterize the nature. There are
five predefined attributes —abstol, access, idt_nature, ddt_nature, andunits. In
addition, user defined attributes may be defined in a nature.

Attribute declaration assigns a constant expression to the attribute name.

abstol

Theabstol attribute provides a tolerance measure (metric) for convergence of potential
or flow calculation. It specifies the maximum negligible for signals associated with the
nature.

It is an required attribute. The constant expression assigned to it must evaluate to a real
value.

Version 1.0 Verilog-A Language Reference Manual 3-8

Nodes Data Types

access

Theaccess attribute identifies the name for the access function. When the nature is used
to bind potential, the name is used as an access function for the potential; when the nature
is used to bind flow, the name is used as an access function for the flow. The usage of
access function is described further in section 4.3.

This attribute is required for all parent natures (base natures). It is illegal for a derived
nature to change the access attribute; the derived nature always inherits the access
attribute of its parent nature. When specified, the constant expression assigned to it must
be an identifier (name, not a string).

idt_nature

The idt_natureattribute provides a relationship between a nature and the nature that
represents its time integral.

When specified, the constant expression assigned to an idt_nature attribute must be the
name (not a string) of a nature that is defined elsewhere. It is possible for a nature to be
self referring with respect to its idt_nature attribute. In other words, the value of the
idt_nature attribute may be the nature that the attribute itself is associated with.

This attribute is optional. While it is possible to override the parent’s value of the
idt_nature attribute, the nature specified must be related to the nature used for the
idt_nature attribute by the parent.

ddt_nature

Theddt_natureattribute provides a relationship between a nature and the nature that
represents its time derivative.

When specified, the constant expression assigned to a ddt_nature attribute must be the
name (not a string) of a nature that is defined elsewhere. It is possible for a nature to be
self referring with respect to its ddt_nature attribute. In other words, the value of the
ddt_nature attribute may be the nature that the attribute itself is associated with.

This attribute is optional. While it is possible to override the parent’s value of the
ddt_nature attribute, the nature specified must be related to the nature used for the
ddt_nature attribute by the parent.

units

Theunits attribute provides a binding between the value of the access function and the
units for that value.

It is a required attribute for all parent natures. It is illegal for a derived nature to define
or change the units attribute; the derived nature always inherits the units attribute of its
parent nature.

When specified, the constant expression must be a string.

Version 1.0 Verilog-A Language Reference Manual 3-9

Nodes Data Types

3.3.1.3 User Defined Attributes

In addition to the predefined attributes listed above, a nature can have other attributes
that may be useful for analog modeling. Typical examples include certain maximum and
minimum values to define valid range, etc.

A user defined attribute may be declared in the same manner as any of the predefined
attributes. The name of the attribute must be unique in the nature being defined, and the
value being assigned to the attribute must be constant.

3.3.2 Disciplines

A discipline description consists of binding natures to potential and flow.

The syntax for declaring a discipline is as follows:

Figure 3-4: Syntax for discipline declaration

A discipline must be defined between the keywordsdiscipline and enddiscipline. Each
discipline must have a unique identifier as the name of the discipline.

The discipline declarations are at the same level as nature and module declarations in the
source text. That is, disciplines are declared at the top level, and discipline declarations
do not nest inside other discipline declarations, nature declarations, or module
declarations.

discipline_declaration ::=
discipline discipline _identifier

[discipline_descriptions]
enddiscipline

discipline_descriptions ::=
discipline_description

| discipline_description discipline_descriptions

discipline_description ::=
nature_binding

| attr_description

nature_binding ::=
pot_or_flow nature _identifier ;

attr_description ::=
pot_or_flow . attribute _identifier = constant_expression ;

pot_or_flow ::=
potential

| flow

Version 1.0 Verilog-A Language Reference Manual 3-10

Nodes Data Types

3.3.2.1 Nature Binding

Each discipline can bind a nature to its potential and flow.

Only the name of the nature is specified in the discipline. The nature binding for potential
is specified using the keywordpotential. The nature binding for flow is specified using
the keywordflow.

The access function defined in the nature bound to potential is used in the model to
describe the signal-flow that obeys Kirchhoff’s Potential Law (KPL). This access
function is calledpotential access function.

The access function defined in the nature bound to flow is used in the model to describe
the signal-flow that obeys Kirchhoff’s Flow Law (KFL). This access function is called
flow access function.

Disciplines with two natures are called conservative disciplines, and the nodes
associated with conservative disciplines are called conservative nodes. Conservative
disciplines must not have the same nature specified for both the potential and the flow.
Disciplines with a single nature are called as signal-flow disciplines, and the nodes with
signal-flow disciplines are called signal-flow nodes.

Example:

Conservative discipline:

discipline electrical
potential voltage ;
flow current ;

enddiscipline

Signal-flow disciplines:

discipline voltage
potential voltage ;

enddiscipline

discipline current
flow current;

enddiscipline

3.3.2.2 Empty Disciplines

It is possible to define a discipline with no nature bindings. These are known as empty
disciplines, and may be used in structural descriptions when you wish to let the
components connected to a node determine which natures are to be used for the node.
Verilog-A HDL predefineswire as an empty discipline.

3.3.2.3 Deriving Natures from Disciplines

A nature may be derived from the nature bound to potential or flow in a discipline. This
allows the new nature to have the same attributes as the attributes for the nature bound
to the flow or the potential of the discipline.

Version 1.0 Verilog-A Language Reference Manual 3-11

Nodes Data Types

If the nature binding to the flow or the potential of a discipline changes, the new nature
will automatically inherit the attributes for the changed nature.

In order to derive a new nature from flow or potential of a discipline, the nature
declaration should include the discipline name followed by the hierarchical separator (.)
and the keywordflow or potential.

A nature derived from the flow or potential of a discipline may declare additional
attributes, or override values of the attributes already declared.

For example,

nature ttl_curr
units = "A" ;
access = I ;
abstol = 1u ;

endnature

nature ttl_volt
units = "V" ;
access = V;
abstol = 100u ;

endnature

discipline ttl
potential ttl_volt ;
flow ttl_curr ;
flow.abstol = 10u ;

enddiscipline

nature ttl_node_curr : ttl.flow
endnature // abstol = 10u as modified in ttl

nature ttl_node_volt : ttl.potential
abstol = 1m ; // modified for this nature
max = 12.3 ; // new attribute for this nature

endnature

3.3.3 Node Declaration

Each node declaration is associated with an already declared discipline or an empty
discipline called wire. The following syntax is used for declaring nodes:

Version 1.0 Verilog-A Language Reference Manual 3-12

Nodes Data Types

Figure 3-5: Syntax for node declaration

The discipline must be defined for a node to be declared of the type of a discipline.

If a range is specified for a node, the node is called a vector node; otherwise it is called
a scalar node. A vector node is also called an analog bus. All the operators for scalar
nodes also operate on the vector nodes.

Examples:

electrical [MSB:LSB] n1 ; // MSB and LSB are parameters
voltage [5:0] n2, n3 ;
magnetic inductor ;
wire [10:1] connector1 ;

Nodes represent the abstraction of information about signals. As terminals (ports of a
module declared as nodes), nodes represent component interconnections. Nodes can be
used in the following situations in a model:

■ Nodes declared in the module interface define the terminals to the module (See
section 7.3.2)

■ Nodes declared within the module scope are used for modeling behavior internal
to that module.

A node used for modeling a conservative system must have the discipline with both
access functions (potential and flow) defined. For modeling a signal-flow system, the
discipline of a node can have only one access function.

Nodes declared with an empty discipline do not have declared natures, so such nodes
cannot be used in a behavioral description (because the access functions are not known).
However, such nodes can be used in structural descriptions, where they inherit the
natures from the ports of the instances of modules that connect to them.

node_declaration ::=
discipline _identifier [range] list_of_nodes ;

| wire [range] list_of_nodes ;

range ::=
[msb_expression : lsb_expression]

list_of_nodes ::=
node _identifier

| node _identifier , list_of_nodes

msb_expression ::=
constant_expression

lsb_expression ::=
constant_expression

Version 1.0 Verilog-A Language Reference Manual 3-13

Node Compatibility Data Types

3.3.4 Implicit Nodes

Nodes can be used in a structural descriptions without being declared. In this case, the
node is implicitly declared to be a scalar node with the empty discipline wire.

3.4 Node Compatibility

Certain operations can be done on nodes only if the two (or more) nodes are compatible.
For example, if an access function has two nodes as arguments, they must be compatible.
The nodes are considered compatible if their respective disciplines are compatible. The
following rules apply in deciding whether two disciplines are compatible:

Self Rule: A discipline is compatible with itself.

Potential Compatibility Rule: If the natures of the two potential are compatible, and the
natures of the two flow are not incompatible then the two disciplines are considered
compatible.

Flow Compatibility Rule: If the natures of the two flow are compatible, and the natures
of the two potential are not incompatible then the two disciplines are considered
compatible.

Nature Compatibility Rule: Two natures are compatible if they both exist and are derived
from the same base nature.

Nature Incompatibility Rule: Two natures are not incompatible if they are compatible or
if one or both do not exist.

Units Value Rule: All compatible natures must have the same value for the attribute
units. Since a child nature cannot override a base nature’s unit, this rule is always
maintained.

Empty Discipline Rule: An empty discipline is compatible with all disciplines.

The following example illustrates these rules:

Version 1.0 Verilog-A Language Reference Manual 3-14

Node Compatibility Data Types

The following compatibility observations can be made from the above example:

■ electrical and cmos are compatible disciplines because natures for both potential
and flow exist and are derived from the same base natures.

■ electrical and sig_flow_v are compatible disciplines because nature for potential
is same for both disciplines and nature for flow does not exist in sig_flow_v.

■ electrical and sig_flow_i are compatible disciplines because nature for flow is
same for both disciplines and nature for potential does not exist in sig_flow_i.

■ electrical and mechanical are incompatible disciplines because natures for both
potential and flow are not derived from the same base natures.

■ electrical and sig_flow_x are incompatible disciplines because nature for both
potential are not derived from the same base nature.

■ sig_flow_v and sig_flow_i are compatible disciplines as well as sig_flow_v and
sig_flow_f are compatible disciplines because the natures do not conflict (the
potential natures do not conflict because only sig_flow_v has a potential nature,

nature voltage
access = V;
units = "V";
abstol = 1uV;

endnature

nature current
access = I;
units = "A";
abstol = 1pA;

endnature

discipline electrical
potential voltage;
flow current;

enddiscipline

discipline cmos:electrical
potential . abstol =1mV;

enddiscipline

discipline sig_flow_v
potential voltage;

enddiscipline

discipline sig_flow_i
flow current;

enddiscipline

nature position
access = X;
units = "m";
abstol = 1um;

endnature

nature force
access = F;
units = "N";
abstol = 1nN;

endnature

discipline mechanical
potential position;
flow force;

enddiscipline

discipline sig_flow_x
potential position;

enddiscipline

discipline sig_flow_f
flow force;

enddiscipline

discipline wire
enddiscipline

Version 1.0 Verilog-A Language Reference Manual 3-15

Branches Data Types

and the flow natures do not conflict because sig_flow_v does not have a flow
nature)

■ wire is compatible with all other disciplines because it has neither a potential nor
a flow nature. Without natures, there can be no conflicting natures.

3.5 Branches

A branch is a path between two nodes. If both nodes are conservative, then the branch is
a conservative branch and it defines a branch potential and a branch flow. If one node is
a signal-flow node, then the branch is a signal-flow branch and it defines either a branch
potential or a branch flow, but not both.

3.5.1 Branch Declaration

Each branch declaration is associated with two nodes from which it derives a discipline.
These nodes are referred to as the branch terminals. Only one node need be specified, in
which case the second is taken to be ground and the discipline for the branch is taken
from the specified node. The disciplines for the nodes specified must be compatible (see
section 3.4).

If the same node is specified twice, and if it is a formal node (a port), then the branch is
aport branch. Specifying an actual node (an internal node) twice on a branch declaration
is considered to be an error.

The following syntax is used for declaring branches:

Figure 3-6: Syntax for branch declaration

branch_declaration ::=
branch list_of_branches ;

list_of_branches ::=
list_of_parallel_branches

| list_of_parallel_branches , list_of_branches

list_of_parallel_branches ::=
terminals list_of_branch_identifiers

terminals ::=
(node _identifier)

| (node _identifier , node _identifier)

list_of_branch_identifiers ::=
branch _identifier

| branch _identifier , list_of_branch_identifiers

Version 1.0 Verilog-A Language Reference Manual 3-16

Branches Data Types

If one of the terminals of a branch is a vector node, then the other terminal must either
be a scalar or it must be a vector node of the same size. In this case, the branch is referred
to as being a vector branch. When both terminals are vectors, the scalar branches that
make up the vector branch connect between the corresponding scalar nodes that make up
the vector terminals.

When one terminal is a vector and the other is a scalar, there is one scalar branch
connecting to each scalar node in the vector terminal, and the other terminal of each
branch connects to the scalar terminal.

3.5.2 Accessing Node and branch Signals and Attributes

Signals on nodes and branches can be accessed only by the access functions of the
discipline associated with them. The name of the node or the branch must be specified
as the argument to the access function.

For example,

electrical out, in ; // as defined in Section 3.3.2.1
parameter real gm = 1 ;

analog
I(out) <+ gm*V(in) ;

electrical p, n;
branch (p,n) res;
parameter real R = 50;

analog
V(res) <+ R*I(res);

Vector Branch

Vector TerminalVector Terminal

Vector Branch

Scalar TerminalVector Terminal

Version 1.0 Verilog-A Language Reference Manual 3-17

Namespace Data Types

The attributes are attached to the nature of potential or flow. Therefore, the attributes for
a node or a branch can be accessed using the hierarchical referencing operator (.) to the
potential or flow for the node or the branch.

For example,

electrical a, b, n1, n2;
branch (n1, n2) cap ;
parameter real c = 1p;

analog
I(a,b) <+ c* ddt (V(a,b), a. potential . abstol);

analog
I(cap) <+ c* ddt (V(cap), cap. potential . abstol) ;

The formal syntax for referencing access functions and attributes is as follows:

Figure 3-7: Syntax for referencing access functions and attributes of a node

3.6 Namespace

3.6.1 Nature and Discipline

The natures and disciplines are defined at the same level of scope as that of modules.
Thus, identifiers defined as natures or disciplines have the global scope, and allows
declaration of nodes inside any module in the same manner as an instance of a module.

3.6.2 Node

The scope rules for node identifiers are the same as the scope rules for any other
identifier declarations with one exception - nodes may not be declared anywhere other
than the port of a module or in the module itself. In other words, a node may not be
declared inside any block (named or unnamed) other than a module; there is no local
declaration for a node.

access_function_reference ::=
access_function _identifier (node_args)

node_args ::=
node _identifier

| node _identifier , node _identifier

attribute_reference ::=
node _identifier . pot_or_flow . attribute _identifier

| branch _identifier . pot_or_flow . attribute _identifier

Version 1.0 Verilog-A Language Reference Manual 3-18

Namespace Data Types

All access functions are always uniquely defined for each node based on the discipline
of the node. Each access function is always used with the name of the node as its
argument, and a node is always accessed only through its access functions.

The hierarchical reference character (.) may be used to reference a node across the
module boundary using the rules specified in IEEE 1364.

3.6.3 Branch

The scope rules for branch identifiers are the same as the scope rules for node identifiers.
In other words, branches are declared inside modules but may not be declared inside any
block (named or unnamed) other than a module; there is no local declaration for a branch.

The access functions are always uniquely defined for each branch based on the discipline
of the branch. The access function is always used with the name of the branch as its
argument, and a branch is always accessed only through its access functions.

Version 1.0 Verilog-A Language Reference Manual 4-1

Operators Expressions

Section 4

Expressions

This section describes the operators and operands available in the Verilog-A HDL, and
how to use them to form expressions. These operators and operands are a subset of those
in Verilog HDL because Verilog-A HDL does not supportreg or other data types with
unknown or strength values.

An expression is a construct that combinesoperands with operators to produce a result
that is a function of the values of the operands and the semantic meaning of the operator.
Any legal operand, such as an integer or an indexed element from an array of real,
without any operator is also considered an expression. Wherever a value is needed in a
Verilog-A HDL statement, an expression can be used.

Some statement constructs require an expression to be aconstant expression. The
operands of a constant expression consists of constant numbers and parameter names,
but can use any of the operators defined in Table 4-1.

4.1 Operators

The symbols for the Verilog-A HDL operators are similar to those in the C programming
language. Table 4-1 lists these operators.

Table 4-1: Operators in Verilog HDL

+ - * / arithmetic

% modulus

> >= < <= relational

! logical negation

&& logical and

|| logical or

== logical equality

!= logical inequality

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

^ bit-wise exclusive or

Version 1.0 Verilog-A Language Reference Manual 4-2

Operators Expressions

4.1.1 Operators with real operands

The operators shown in Table 4-2 are legal when applied to real operands. All other
operators are considered illegal when used with real operands.

The result of using logical or relational operators on real numbers is an integer value 0
or 1 (true).

Table 4-2 lists operators that can not be used to operate on real numbers.

4.1.2 Binary operator precedence

The precedence order ofbinary operators and theconditional operator (?:) is shown
below in Table 4-4.

^~ or ~^ bit-wise equivalence

<< left shift

>> right shift

? : conditional

or event or

Table 4-2: Legal operators for use in real expressions

unary + unary - unary operators

+ - * / arithmetic

> >= < <= relational

! && || logical

== != logical equality

?: conditional

or event or

Table 4-3: Operators not allowed for real expressions

% modulus

<< >> shift

Table 4-1: Operators in Verilog HDL

Version 1.0 Verilog-A Language Reference Manual 4-3

Operators Expressions

Operators shown on the same row in Table 4-4 have the same precedence. Rows are
arranged in order of decreasing precedence for the operators. For example,* , / , and%

all have the same precedence, which is higher than that of the binary + and- operators.

All operators associate left to right with the exception of the conditional operator which
associate right to left. Associativity refers to the order in which the operators having the
same precedence are evaluated. Thus, in the following exampleB is added toA and then
C is subtracted from the result ofA+B.

A + B - C

When operators differ in precedence, the operators with higher precedence associate
first. In the following example,B is divided byC (division has higher precedence than
addition) and then the result is added toA.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.1.3 Expression evaluation order

The operators follow the associativity rules while evaluating an expression as described
in section 4.1.2. However, if the final result of an expression can be determined early,
the entire expression need not be evaluated. This is calledshort-circuiting an expression
evaluation.

integer A, B, C, result ;
result = A & (B | C) ;

If A is known to be zero, the result of the expression can be determined as zero without
evaluating the sub-expressionB | C .

Table 4-4: Precedence rules for operators

+ - ! ~ (unary) highest precedence

* / %

+ - (binary)

 << >>

 < <= > >=

== !=

&&

||

?: (conditional operator) lowest precedence

Version 1.0 Verilog-A Language Reference Manual 4-4

Operators Expressions

4.1.4 Arithmetic operators

The binary arithmetic operators are the following:

The integer division truncates any fractional part toward zero. The modulus operator, for
exampley % z , gives the remainder when the first operand is divided by the second, and
thus is zero whenz dividesy exactly. The result of a modulus operation takes the sign
of the first operand.

The unary arithmetic operators take precedence over the binary operators. The unary
operators are the following:

Table 4-7 gives examples of modulus operations.

4.1.5 Relational operators

Table 4-8 lists and defines the relational operators

Table 4-5: Arithmetic operators defined

a + b a plus b

a - b a minus b

a * b a multiply by b

a / b a divide by b

a % b a modulo b

Table 4-6: Unary operators defined

+m unary plus m (same as m)

- m unary minus m

Table 4-7: Examples of modulus operations

Modulus Expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 the result takes the sign of the first operand

11 % -3 2 the result takes the sign of the first operand

Version 1.0 Verilog-A Language Reference Manual 4-5

Operators Expressions

An expression using theserelational operators yields the value0 if the specified relation
is false, or the value1 if it is true.

All the relational operators have the same precedence. Relational operators have lower
precedence than arithmetic operators.

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

When foo - (1 < a) evaluates, the relational expression evaluates first and then either
zero or one is subtracted fromfoo . Whenfoo - 1 < a evaluates, the value offoo

operand is reduced by one and then compared witha.

4.1.6 Equality operators

Theequality operators rank lower in precedence than the relational operators. Table 4-9
lists and defines the equality operators.

Both equality operators have the same precedence. These operators compare the value
of the operands. As with the relational operators, the result will be0 if comparison fails,
1 if it succeeds.

4.1.7 Logical operators

The operatorslogical and (&&) andlogical or (||) are logical connectives. The result of
the evaluation of a logical comparison can be1 (defined astrue), or0 (defined asfalse).
The precedence of&& is greater than that of|| , and both are lower than relational and
equality operators.

Table 4-8: The relational operators defined

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

Table 4-9: The equality operators defined

a == b a equal to b,

a != b a not equal to b,

Version 1.0 Verilog-A Language Reference Manual 4-6

Operators Expressions

A third logical operator is the unarylogical negation operator! . The negation operator
converts a non-zero or true operand into0 and a zero or false operand into1.

The following expression performs a logical and of three sub-expressions without
needing any parentheses:

a < param1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be used to show
very clearly the precedence intended, as in the following rewrite of the above example:

(a < param1) && (b != c) && (index != lastone)

4.1.8 Bit-wise operators

Thebit-wise operators perform bit-wise manipulations on the operands—that is, the
operator combines a bit in one operand with its corresponding bit in the other operand to
calculate one bit for the result. The logic tables below show the results for each possible
calculation.

Table 4-14: Bit-wise unary negation operator

~

0 1

1 0

Table 4-10: Bit-wise binary and
operator

& 0 1

0 0 0

1 0 1

Table 4-11: Bit-wise binary or
operator

| 0 1

0 0 1

1 1 1

Table 4-12: Bit-wise binary
exclusive or operator

^ 0 1

0 0 1

1 1 0

Table 4-13: Bit-wise binary
exclusive nor operator

^~
~^ 0 1

0 1 0

1 0 1

Version 1.0 Verilog-A Language Reference Manual 4-7

Built-In Mathematical Functions Expressions

4.1.9 Shift operators

Theshift operators, << and>>, perform left and right shifts of their left operand by the
number of bit positions given by the right operand. Both shift operators fill the vacated
bit positions with zeroes. The right operand is always treated as an unsigned number.

integer start, result;
anlog begin

start = 1;
result = (start << 2);

end

In this example, the registerresult is assigned the binary value0100 , which is0001
shifted to the left two positions and zero filled.

4.1.10 Conditional operator

Theconditional operator, also known asternary operator, is right associative and must
be constructed using three operands separated by two operators with the following
syntax:

Figure 4-1: Syntax for conditional operator

The evaluation of a conditional operator begins with the evaluation of expression1. If
expression1 evaluates to false (0), then expression3 is evaluated and used as the result of
the conditional expression. If expression1 evaluates to true (value other than 0), then
expression2 is evaluated and used as the result.

4.1.11 Event or

The eventor operator performs an or of events. See section 6.9.2 for events and
triggering of events.

4.2 Built-In Mathematical Functions

Verilog-A HDL supports the following standard mathematical functions.

conditional_expression ::=
expression1? expression2: expression3

Version 1.0 Verilog-A Language Reference Manual 4-8

Built-In Mathematical Functions Expressions

4.2.1 Standard Mathematical Functions

These are the standard mathematical functions supported by Verilog-A HDL. The
operands must be numeric (integer or real). Formin, max, andabs, if either operand is
real, both are converted toreal, as is the result. All other arguments are converted to real.

4.2.2 Transcendental Functions

These are the trigonometric and hyperbolic functions supported by Verilog-A HDL. All
operands must be of the numeric type (integer or real) and are converted to real if
necessary.

All arguments to the trigonometric and hyperbolic functions are specified in radians.

Function Description Domain

ln(x) Natural logarithm x > 0

log(x) Decimal logarithm x > 0

exp(x) Exponential x < 80

sqrt(x) Square root x > 0

min(x, y) Minimum All x, all y

max(x, y) Maximum All x, all y

abs(x) Absolute Allx

pow(x, y) Power.xy All x, all y

Function Description Domain

sin(x) Sine All x

cos(x) Cosine Allx

tan(x) Tangent ,n is odd

asin(x) Arc-sine

acos(x) Arc-cosine

atan(x) Arc-tangent Allx

atan2(x,y) Arc-tangent ofx/y All x, All y

hypot(x,y) sqrt(x2 + y2) All x, All y

sinh(x) Hyperbolic sine Allx

x n
π
2
--- 

 ≠

1 x 1≤ ≤–

1 x 1≤ ≤–

Version 1.0 Verilog-A Language Reference Manual 4-9

Signal Access Functions Expressions

4.2.3 Environment Parameters

These functions return information about the current environment parameters. They take
no arguments and return a real number.

4.2.4 Error Handling

All math functions not defined for any input must report an error.

4.3 Signal Access Functions

Access functions are used to access signals on nodes, ports, and branches. The name of
the access function for a signal is taken from the discipline of the node, port, or branch
to which the signal is associated. If the access function is used in an expression, the
access function returns the value of the signal. If the access function is being used on the
left side of a branch assignment or contribution statement, it assigns a value to the signal.
The following table shows how access functions can be applied to branches, nodes, and
ports. In this table,b1 refers to a branch,n1 andn2 represent either nodes or ports, and
p1 represents a port. These branches, nodes, and ports are assumed to belong to the

cosh(x) Hyperbolic cosine Allx

tanh(x) Hyperbolic tangent Allx

asinh(x) Arc-hyperbolic sine Allx

acosh(x) Arc-hyperbolic cosine

atanh(x) Arc-hyperbolic tangent

Function Returns

$realtime Current simulation time in seconds.

$temperature Ambient temperature in kelvin.

$vt Thermal voltage ().

$vt(temp) Thermal voltage at given temperature.

Function Description Domain

x 1≥

1 x 1≤ ≤–

kT q⁄

Version 1.0 Verilog-A Language Reference Manual 4-10

Analog Operators Expressions

electrical discipline where V is the name of the access function for the voltage
(potential), and I is the name of the access function for the current (flow).

The argument expression list must be a branch identifier, or a list of one or two node or
terminal identifiers. If two node identifiers are given as arguments to an access function,
they must not be the same identifier. If two port identifiers are given as arguments, and
the identifiers are the same, then the branch defined by the access function is a port
branch. The access function name must match the discipline declaration for the nodes,
ports, or branch given in the argument expression list. In this case, V and I were used as
examples of access functions for electrical potential and flow.

4.4 Analog Operators

Analog operators are functions that operate on more than just the current value of their
arguments. Rather, they maintain internal state and their output is a function of both the
input and the internal state.

Analog operators operate on an expression and return a value. The expression and the
return value may be either a scalar or a vector. If the expression is vector valued, then
the return value is vector-valued with the same dimension.

Analog operators are also referred to as filters. They include the time derivative, time
integral, and delay operators from calculus. They also include the transition and slew
filters, that are used to remove discontinuity from piecewise constant and piecewise
continuous waveforms. Finally they include more traditional filters, such as those
described with Laplace and Z-transform descriptions.

One special analog operator is the$limexp() function, which is a version of theexp()
function with built-in limits that improves convergence.

Example Comments

V(b1) Accesses the voltage across branchb1

V(n1) Accesses the voltage ofn1 (a node or a port) relative to ground

V(n1,n2) Accesses the voltage difference betweenn1 andn2 (nodes or ports)

V(p1,p1) Accesses the voltage across the port branch associated with portp1

I(b1) Accesses the current on branchb1

I(n1) Accesses the current flowing fromn1 (a node or port) to ground

I(n1, n2) Accesses the current flowing betweenn1 andn2

I(p1,p1) Accesses the current flow into the module through portp1

Version 1.0 Verilog-A Language Reference Manual 4-11

Analog Operators Expressions

4.4.1 Restrictions on analog operators

Because analog operators maintain internal state, they are subject to several important
restrictions.

Analog operators must not be used inside conditional statements (if andcase) unless the
conditional expression that controls the statement consists of terms that cannot change
their value during the course of an analysis. In particular, the conditional expression can
only consist of literal numerical constants, parameter values, and theanalysis() function.

Analog operators are not allowed in theforever, repeat, while,andfor iteration
statements. They are, however, allowed ingenerate statement.

Finally, analog operators can only be used inside ananalog block. They cannot be used
inside a user defined function.

These restrictions are present to prevent use that would cause the internal state to be
corrupted or become out-of-date, which results in anomalous behavior.

4.4.2 Analog Operators and Tolerances

Generally, simulators formulate the mathematical description of the system in terms of
first-order differential equations and solve them numerically. There is no direct way to
solve a set of nonlinear differential equations so iterative approaches are used. When
using iterative approaches, one must have criteria used to determine when the algorithm
is close enough to the solution to stop the iteration. Tolerances are used for this purpose.
Thus, each equation must have a tolerance.

Occasionally, analog operators will require that new equations and new unknowns be
introduced by the simulator to convert a module description into a set of first-order
differential equations. In this case, the simulator will attempt to determine from context
which tolerance should be associated with the new equation and new unknown.
Alternatively, these operators allow tolerances to be specified.

Specifying literal values for tolerances can reduce the ability of a module to be reused
with signals of much different size. This issue can be avoided by using theabstol
attribute from nodes and branches.

4.4.3 Time Derivative Operator

Theddt operator computes the time derivative of its argument.

Version 1.0 Verilog-A Language Reference Manual 4-12

Analog Operators Expressions

In DC analysis,ddt() returns zero. The optional parameterabstol is used as an absolute
tolerance if needed. Whether an absolute tolerance is needed depends on the context in
whichddt is used. See Section 4.4.2 on page -11 for more information. The absolute
tolerance applies to the output of theddt operator, and is the largest signal level that is
considered negligible.

4.4.4 Time Integral Operator

The idt operator computes the time-integral of its argument.

When specified with initial conditions, theidt() operator returns the value of the initial
condition in DC and IC analyses and wheneverassert is given and is nonzero. Without

Operator Example Comments

ddt ddt(x) Returns , the time-derivative ofx

ddt(x, abstol) Same as above, except absolute
tolerance is specified explicitly.

Operator Example Comments

idt idt(x) Returns , the time-integral
of x from 0 to t with the initial
condition being computed in the DC
analysis.

idt(x,a) Returns , the time-
integral ofx from 0 tot with initial
conditiona. In DC analysis,a is
returned.

idt(x,a,assert) Returns , the time-
integral ofx from t0 to t with initial
conditiona. Assert is a integer-valued
parameter.idt returnsa whenassert is
nonzero.t0 is the time whenassert
last became 0.

idt(x,a,assert,abstol) Same as above, except absolute
tolerance is specified explicitly.

td
d

x t()

x τ() τd
0
t∫

x τ() τ a+d
0
t∫

x τ() τ a+d
t0

t∫

Version 1.0 Verilog-A Language Reference Manual 4-13

Analog Operators Expressions

initial conditions,idt multiplies its argument by infinity in DC analysis. Hence, without
initial conditions, it must be used in a system with feedback that forces its argument to
zero. The optional parameterabstol is used as an absolute tolerance if needed. Whether
an absolute tolerance is needed depends on the context in whichidt is used. See
section 4.4.2 for more information. The absolute tolerance applies to the input of theidt
operator and is the largest signal level that is considered negligible.

4.4.5 Delay Operator

Delay implements transport delay for continuous waveforms. (Use the transition
function to delay discrete-valued waveforms.)expression is delayed by the amount
time_delay. There are two forms of the delay function, the first does not allow the delay
to vary, and the second allows it to vary within a fixed interval. In both cases,time_delay
must be nonnegative. In the first case, changes to the parametertime_delay are ignored
and the value initially specified is used. In the second case,time_delay can change as
long as it remains between 0 andmax_delay, however, changes tomax_delay are ignored
and the initial value is used.

The general forms are

delay(expression, time_delay)
delay(expression, time_delay, max_delay)

4.4.6 Transition Filter

transition smooths out piece-wise constant waveforms. The transition filter is used to
imitate transitions and delays on digital signals. (For non-piecewise-constant signals see
slew). This function provides controlled transitions between discrete signal levels by
setting the rise time and fall time of signal transitions.transition stretches instantaneous
changes in signals over a finite amount of time, as shown below, and can delay the
transitions

.

The general form is

transition(expression [, delay [, rise_time [, fall_time]]])

transition takes the following arguments (allreal numbers):

■ The input expression

tr tft0 t0

d

output_expression(t)input_expression(t)

Version 1.0 Verilog-A Language Reference Manual 4-14

Analog Operators Expressions

■ The delay time (must be nonnegative)

■ The rise time (must be positive)

■ The fall time (must be positive)

The input expression is expected to evaluate over time to a piecewise constant
waveform. When applied,transition forces all positive transitions ofexpression to occur
over rise_time and all negative transitions to occur infall_time, after an initial delay of
delay. Thus,delay models transport delay andrise_time andfall_time model inertial
delay.

transition returns areal number that over time describes a piecewise linear waveform.
The transition function also causes the simulator to place time-points at both corners of
a transition to assure that each transition is adequately resolved. Use short transitions or
a short non-zero delay with caution as these can cause the simulator to slow down in
order to meet accuracy constraints.

delay, rise_time, and fall_time are optional. Ifdelay is not specified, it is taken to be
zero. If only therise_time value is specified, the simulator uses it for both rise and fall
times. If neither rise nor fall time are specified, the rise and fall time are taken to be one
unit of time (as defined by thetimescale complier directive) and no attempt is made to
control the time step to follow the trailing corner on the transition. In DC analysis,
transition passes the value of theexpression directly to its output.

transition is designed to smooth out piecewise constant waveforms. When applied to
waveforms that vary smoothly, the simulation results are generally unsatisfactory. In
addition, applying the transition function to a continuously varying waveform can cause
the simulator to run slowly. Usetransition for discrete signals andslew for continuous
signals.

If interrupted on a rising transition,transition tries to complete the transition in the
specified time.

■ If the new final value level is below the value level at the point of the interruption
(the current value),transition uses the old destination as the origin.

■ If the new destination is above the current level, the first origin is retained.

In the following example, a rising transition is interrupted near its midpoint, and the new
destination level of the value is below the current value. For the new origin and
destination,transition computes the slope that completes the transition from the origin
(not the current value) in the specified transition time. It then uses the computed slope to
transition from the current value to the new destination.

Version 1.0 Verilog-A Language Reference Manual 4-15

Analog Operators Expressions

With larger delays, it is possible for a new transition to be specified before a previously
specified transition starts. The transition function handles this by deleting any transitions
that would follow a newly scheduled transition. A transition function can have an
arbitrary number of transitions pending. A transition function can be used in this way to
implement transport delay for discrete-valued signals.

Because the transition function cannot be linearized in general, it is not possible to
accurately represent a transition function in AC analysis. The AC transfer function is
approximately modeled as having unity transmission for all frequencies in all situations.
Because the transition function is intended to handle discrete-valued signals, the small
signals present in AC analysis rarely reach transition functions. As a result, the
approximation used is generally sufficient.

4.4.6.1 QAM Modulator

In this example, the transition function is used to control the rate of change of the
modulation signal in a QAM modulator.

module qam16(out, in) ;
parameter freq=1.0, ampl=1.0, delay=0, ttime=1.0/freq ;
input [0:4] in ;
output out ;
electrical in, out ;
real x, y ;
integer row, col ;

analog begin
row = 2*(V(in[3]) > thresh) + (V(in[2]) > thresh) ;
col = 2*(V(in[1]) > thresh) + (V(in[0]) > thresh) ;

tr

tf

Original destination

New destination

Interruption

output_expression(t)

New origin

Version 1.0 Verilog-A Language Reference Manual 4-16

Analog Operators Expressions

x = transition (row - 1.5, delay, ttime) ;
y = transition (col - 1.5, delay, ttime) ;
V(out) <+ ampl * x * cos (2 * ‘M_PI * freq * $realtime ())

+ ampl * y * sin (2 * ‘M_PI * freq * $realtime ()) ;
bound_step (0.1 / freq) ;

end
endmodule

4.4.6.2 A-D Converter

The following example, an N-bit analog to digital converter, demonstrates the ability of
the transition function to handle vectors.

module a2d(in, clk, out) ;
parameter bits=8, fullscale=1.0, delay=0, ttime=10n ;
input in, clk ;
output [0:bits-1] out ;
electrical in, clk, out ;
real sample, thresh ;
integer result[0:bits-1], i ;

analog begin
@(cross (V(clk)-2.5, +1) begin

sample = V(in) ;
thresh = full_scale/2.0 ;
for (i=bits-1; i>=0; i=i-1) begin

if (sample > thresh) begin
result[i] = 1 ;
sample = sample - thresh ;

end
else result[i] = 0 ;
sample = 2.0*sample ;

end
end
V(out) <+ transition (result,delay,ttime) ;

end
endmodule

4.4.7 Slew Filter

Theslew contribution filter, bounds the rate of change (slope) of the waveform. A typical
use forslew is generating continuous signals from piecewise continuous signals. (For
discrete-valued signals, seetransition.) The general form is

slew(expression [, max_pos_slew_rate [, max_neg_slew_rate]])

slew takes the following arguments (allreal numbers):

■ The input expression

■ The maximum positive slew rate

Version 1.0 Verilog-A Language Reference Manual 4-17

Analog Operators Expressions

■ The maximum negative slew rate

When applied,slew forces all transitions ofexpression faster thanmax_pos_slew_rate to
change atmax_pos_slew_rate rate for positive transitions and limits negative transitions
to max_neg_slew_rate rate

.

The two rate values are optional.max_pos_slew_rate must be greater
than 0 andmax_neg_slew_rate must be less than 0. If only one rate is specified, its
absolute value is used for both rates. If no rates are specified,slew passes the signal
through unchanged. If the rate of change ofexpression is less than the specified
maximum slew rates,slew returns the value ofexpression. In DC analysis,slew simply
passes the value of the destination to its output. In AC small-signal analyses, the slew
function has unity transfer function except when slewing, in which case it has zero
transmission through the function.

4.4.8 Laplace Transform Filters

The Laplace transform filters implement lumped linear continuous-time filters. Each
filter takes an optional parameterε, which is used as an absolute tolerance if needed.
Whether an absolute tolerance is needed depends on the context in which the filter is
used.

4.4.8.1 laplace_zp

laplace_zp implements the zero-pole form of the Laplace transform filter.

laplace_zp(expr , ζ, ρ [, ε])
whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, ρ (rho) is the vector ofN real pairs, one for each pole. The poles are given in
the same manner as the zeros. The transfer function is

∆y
∆t
------ ratepmax≤∆y

∆t

output_expression(t)

H s()

1 s
ζk

r jζk
i+

-------------------– 
 

k 0=

M 1–

∏

1 s
ρk

r jρk
i+

--------------------– 
 

k 0=

N 1–

∏
--=

Version 1.0 Verilog-A Language Reference Manual 4-18

Analog Operators Expressions

where and are the real and imaginary parts of the zero, while and are
the real and imaginary parts of the pole. If a root (a pole or zero) is real, the imaginary
part must be specified as 0. If a root is complex, its conjugate must also be present. If a
root is zero, then the term associated with it is implemented ass rather than ,
wherer is the root.

4.4.8.2 laplace_zd

laplace_zd implements the zero-denominator form of the Laplace transform filter.

laplace_zd(expr, ζ, d [, ε])
whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, d is the vector ofN real numbers that contains the coefficients of the
denominator. Its transfer function is

where and are the real and imaginary parts of the zero, while is the
coefficient of the power of s in the denominator. If a zero is real, the imaginary part
must be specified as 0. If a zero is complex, its conjugate must also be present. If a zero
is zero, then the term associated with it is implemented ass rather than .

4.4.8.3 laplace_np

laplace_np implements the numerator-pole form of the Laplace transform filter.

laplace_np(expr, n , ρ [, ε])
wheren is a vector ofM real numbers that contains the coefficients of the numerator.
Similarly, ρ (rho) is a vector ofN pairs of real numbers. Each pair represents a pole, the
first number in the pair is the real part of the pole, and the second is the imaginary part.
The transfer function is

where is the coefficient of the power ofs in the numerator, while and are
the real and imaginary parts of the pole. If a pole is real, the imaginary part must be

ζk
r ζk

i kth ρk
r ρk

i

kth

1 s r⁄–()

H s()

1 s
ζk

r jζk
i+

-------------------– 
 

k 0=

M 1–

∏

dks
k

k 0=

N 1–

∑
--=

ζk
r ζk

i kth dk
kth

1 s ζ⁄–()

H s()

nks
k

k 0=

M 1–

∑

1 s
ρk

r jρk
i+

--------------------– 
 

k 0=

N 1–

∏
--=

nk kth ρk
r ρk

i

kth

Version 1.0 Verilog-A Language Reference Manual 4-19

Analog Operators Expressions

specified as 0. If a pole is complex, its conjugate must also be present. If a pole is zero,
then the term associated with it is implemented ass rather than .

4.4.8.4 laplace_nd

laplace_nd implements the numerator-denominator form of the Laplace transform filter.

laplace_nd(expr, n, d [, ε])
wheren is an vector ofM real numbers that contains the coefficients of the numerator,
andd is a vector ofN real numbers that contains the coefficients of the denominator. The
transfer function is

where is the coefficient of the power ofs in the numerator, and is the
coefficient of the power of s in the denominator.

4.4.8.5 Examples

V(out) <+ laplace_zp(V(in), [-1,0], [-1,-1,-1,1]);

implements

V(out) <+ laplace_nd(V(in), [0,1], [-1,0,1]);

implements

Finally, this example implements a band-limited white noise source with

V(out) <+ laplace_zp(white_noise(k), [], [-1,-1,-1,1]);

4.4.9 Z-Transform Filters

TheZ-transform filters implement linear discrete-time filters. Each filter supports the a
parameterT that specifies the sampling period of the filter. A filter with unity transfer

1 s ρ⁄–()

H s()

nks
k

k 0=

M

∑

dks
k

k 0=

N

∑
--------------------=

nk kth dk
kth

H s() 1 s+

1 s
1 j+
-----------+ 

  1 s
1 j–
----------+ 

 
---=

H s() s
s2 1–
-------------=

vout
2 k

s2 1– 2
-------------------=

Version 1.0 Verilog-A Language Reference Manual 4-20

Analog Operators Expressions

function acts like a simple sample-and-hold that samples everyT seconds and exhibits
no delay.

All Z-transform filters share three common arguments,T, τ, andt0.T specifies the period
of the filter, is mandatory, and it must be positive.τ specifies the transition time, is
optional, and must be nonnegative. If the transition time is specified and is nonzero, the
timestep is controlled to accurately resolve both the leading and trailing corner of the
transition. If it is not specified, the transition time is taken to be one unit of time (as
defined by thetimescale compiler directive) and the timestep is not controlled to resolve
the trailing corner of the transition. If the transition time is specified as 0, then the output
is abruptly discontinuous. It is not recommended that aZ-filter with 0 transition time be
directly assigned to a branch. Finallyt0 specifies the time of the first transition, and is
also optional. If not given, the first transition occurs att=0.

4.4.9.1 zi_zp

zi_zpimplements the zero-pole form of theZ transform filter.

zi_zp(expr, ζ, ρ, T [, τ [, t0]])

whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, ρ (rho) is the vector ofN real pairs, one for each pole. The poles are given in
the same manner as the zeros. The transfer function is

where and are the real and imaginary parts of the zero, while and are
the real and imaginary parts of the pole. If a root (a pole or zero) is real, the imaginary
part must be specified as 0. If a root is complex, its conjugate must also be present. If a
root is zero, then the term associated with it is implemented asz rather than ,
wherer is the root.

4.4.9.2 zi_zd

zi_zd implements the zero-denominator form of theZ transform filter.

zi_zd(expr, ζ, d, T [, τ [, t0]])

whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.

H z()

1 z
1–

ζk
r jζk

i+
-------------------–

 
 
 

k 0=

M 1–

∏

1 z
1–

ρk
r jρk

i+
--------------------–

 
 
 

k 0=

N 1–

∏
--=

ζk
r ζk

i kth ρk
r ρk

i

kth

1 z r⁄–()

Version 1.0 Verilog-A Language Reference Manual 4-21

Analog Operators Expressions

Similarly, d is the vector ofN real numbers that contains the coefficients of the
denominator. Its transfer function is

where and are the real and imaginary parts of the zero, while is the
coefficient of the power of s in the denominator. If a zero is real, the imaginary part
must be specified as 0. If a zero is complex, its conjugate must also be present. If a zero
is zero, then the term associated with it is implemented asz rather than .

4.4.9.3 zi_np

zi_np implements the numerator-pole form of theZ transform filter.

zi_np(expr, n, ρ, T [, τ [, t0]])

wheren is a vector ofM real numbers that contains the coefficients of the numerator.
Similarly, ρ (rho) is a vector ofN pairs of real numbers. Each pair represents a pole, the
first number in the pair is the real part of the pole, and the second is the imaginary part.
The transfer function is

where is the coefficient of the power ofs in the numerator, while and are
the real and imaginary parts of the pole. If a pole is real, the imaginary part must be
specified as 0. If a pole is complex, its conjugate must also be present. If a pole is zero,
then the term associated with it is implemented asz rather than .

4.4.9.4 zi_nd

zi_nd implements the numerator-denominator form of theZ transform filter.

H z()

1 z
1–

ζk
r jζk

i+
-------------------–

 
 
 

k 0=

M 1–

∏

dkz
k–

k 0=

N 1–

∑
--=

ζk
r ζk

i kth dk
kth

1 z ζ⁄–()

H z()

nkz
k–

k 0=

M 1–

∑

1 z k–

ρk
r jρk

i+
--------------------– 

 
k 0=

N 1–

∏
--=

nk kth ρk
r ρk

i

kth

1 z ρ⁄–()

Version 1.0 Verilog-A Language Reference Manual 4-22

Analysis Dependent Functions Expressions

zi_nd(expr, n, d, T [, τ [, t0]])

wheren is an vector ofM real numbers that contains the coefficients of the numerator,
andd is a vector ofN real numbers that contains the coefficients of the denominator. The
transfer function is

where is the coefficient of the power ofs in the numerator, and is the
coefficient of the power of s in the denominator.

4.4.10 Limited Exponential

The$limexp()function is an operator whose internal state contains information about the
argument on previous iterations. It returns a real value that is the exponential of its single
real argument, however it internally limits the change of its output from iteration to
iteration in order to improve convergence. On any iteration where the change in the
output of the$limexp() function is bounded, the simulator is prevented from terminating
the iteration. Thus, the simulator can only converge when the output of$limexp()equals
the exponential of the input. The apparent behavior of$limexp() is not distinguishable
from exp(), except using$limexp() to model semiconductor junctions generally results
in dramatically improved convergence.

4.5 Analysis Dependent Functions

This section describes theanalysis() function, which is used to determine which type of
analysis is being performed. The remaining functions are used to implement small-signal
sources. The small-signal source functions only affect the behavior of a module during
small-signal analyses. The small-signal analyses provided by SPICE include the AC and
noise analyses, but others are possible. When not active, the small-signal source
functions return 0.

4.5.1 Analysis

The analysis function takes one or more string arguments and returns 1 if any argument
matches the current analysis type. Otherwise it returns 0.

H z()

nkz
k–

k 0=

M 1–

∑

dkz
k–

k 0=

N 1–

∑
-----------------------=

nk kth dk
kth

Version 1.0 Verilog-A Language Reference Manual 4-23

Analysis Dependent Functions Expressions

analysis(analysis_list)

There is no fixed set of analysis types. Each simulator would support its own set.
However, simulators should use the following types to represent analyses that are similar
to those provided by SPICE.

Any type names unsupported by a simulator are assumed to not be a match.

Using the analysis function, it is possible to have a module behave differently depending
on which analysis is being run. For example, it is possible to implement nodesets or
initial conditions using the analysis function and switch branches.

if (analysis ("ic"))
V(cap) <+ initial_value;

else
I(cap) <+ ddt (C*V(cap));

4.5.2 AC Stimulus

A small-signal analysis computes the steady-state response of a system that has been
linearized about its operating point and is driven by a small sinusoid. The sinusoidal
stimulus is provided using the ac_stim() function.

ac_stim([analysis_name [, mag [, phase]]])

The AC stimulus function returns 0 during large-signal analyses (such as DC and
transient) as well as on all small-signal analyses with names different from
analysis_name.The name of a small-signal analysis is implementation dependent,
though it is expected that the name of the equivalent of a SPICE AC analysis will be
named “ac”, which is the default value ofanalysis_name. When the name of the small-

Name Analysis Description

“ac” .AC analysis.

“dc” .OP or .DC analysis.

“noise” .NOISE analysis.

“tran” .TRAN analysis.

“ic” The initial-condition analysis that proceeds a
transient analysis.

“static” Any equilibrium point calculation, including a
DC analysis as well as those that precede
another analysis, such as the DC analysis that
precedes an AC or noise analysis, or the IC
analysis that precedes a transient analysis.

“nodeset” The phase during an equilibrium point
calculation where nodesets are forced.

Version 1.0 Verilog-A Language Reference Manual 4-24

Analysis Dependent Functions Expressions

signal analysis matchesanalysis_name, the source becomes active and models a source
with magnitudemag and phasephase. The default magnitude is 1 and the default phase
is 0. Phase is given in radians.

4.5.3 Noise

Several functions are provided to support noise modeling during small-signal analyses.
To model large-signal noise during transient analyses, use therandom function. The
noise functions are often referred to as noise sources. There are three noise functions, one
models white noise processes, another models1/f or flicker noise processes, and the last
interpolates a vector to model a process where the spectral density of the noise varies as
a piecewise linear function of frequency. The noise functions are only active in small-
signal noise analyses, and return 0 otherwise.

4.5.3.1 white_noise

White noise processes are those whose current value is completely uncorrelated with any
previous or future values. This implies that their spectral density does not depend on
frequency. They are modeled using

white_noise(pwr [, name])

wherewhite_noisegenerates white noise with a power ofpwr. For example, the thermal
noise of a resistor could be modelled using

I(a,b) <+ V(a,b)/R +
white_noise (4 * ‘P_K * $temperature /R, "thermal");

The optionalnameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total output
noise. The contributions of noise sources with the same name from the same instance of
a module are combined in the noise contribution summary.

4.5.3.2 flicker_noise

The second noise function models flicker noise.

flicker_noise(pwr, exp [, name])

whereflicker_noise generates pink noise with a power ofpwr at 1Hz that varies in
proportion to1/f exp.

The optionalnameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total output
noise. The contributions of noise sources with the same name from the same instance of
a module are combined in the noise contribution summary.

4.5.3.3 noise_table

The last noise function interpolates a vector to model a process where the spectral
density of the noise varies as a piecewise linear function of frequency.

Version 1.0 Verilog-A Language Reference Manual 4-25

User defined functions Expressions

noise_table(vector [, name])

wherevectorcontains pairs of real numbers, the first number in each pair is the frequency
in Hertz, and the second is the power.noise_table performs piecewise linear
interpolation to compute the power spectral density generated by the function at each
frequency.

The optionalnameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total output
noise. The contributions of noise sources with the same name from the same instance of
a module are combined in the noise contribution summary.

4.5.3.4 Noise model for diode

The noise of a junction diode could be modelled as follows:

I(a,c) <+ is*(exp (V(a,c) / (n * $vt)) - 1)
+ white_noise (2 * ‘P_Q * I(a))
+ flicker_noise (kf * pow(abs (I(a)),af), ef);

4.5.3.5 Correlated noise

Each noise function generates noise that is uncorrelated with the noise generated by other
functions. Perfectly correlated noise is generated by using the output of one noise
function for more than one noise source. Partially correlated noise is generated by
combining the output of shared and unshared noise functions.

Consider the case where two noise voltages are perfectly correlated:

n = white_noise (pwr);
V(a,b) <+ c1 * n;
V(c,d) <+ c2 * n;

One can also model partially correlated noise sources:

n1 = white_noise (1-corr);
n2 = white_noise (1-corr);
n12 = white_noise (corr);
V(a,b) <+ Kv * (n1 + n12);
I(b,c) <+ Ki * (n2 + n12);

4.6 User defined functions

The purpose of a user defined function is to return a value that is to be used in an
expression. All functions are defined and used inside a module.

4.6.1 Defining a function

The syntax for defining a function is as follows:

Version 1.0 Verilog-A Language Reference Manual 4-26

User defined functions Expressions

Figure 4-2: : Syntax for function declaration

A function declaration begins with the keywordfunction, followed by the type of the
return value from the function, followed by the name of the function and a semicolon,
and ends with the keywordendfunction.

A type must be specified as areal or aninteger. This is the type of the return value from
the function. A function must have at least one input declared. The block item
declaration can declare the type of the inputs as well as local variables used in the
function.

All the variables, including nodes, declared in the module are accessible in the function.

The following example defines a function calledmaxV, which returns potential of the
node that is larger in magnitude.

function real maxV;
input n1, n2 ;
electrical n1, n2 ;
begin

// code to compare potential of two nodes
maxV = (V(n1) > V(n2)) ? V(n1) : V(n2) ;

end
endfunction

function_declaration ::=
function [type] function _identifier ;
function_item_declaration { function_item_declaration }
statement
endfunction

type ::=
integer

| real

function_item_declaration ::=
input_declaration

| block_item_declaration

block_item_declaration ::=
parameter_declaration

| integer_declaration
| real_declaration
| node_declaration

Version 1.0 Verilog-A Language Reference Manual 4-27

User defined functions Expressions

4.6.2 Returning a value from a function

The function definition implicitly declares a variable, internal to the function, with the
same name as the function. This variable has the same type as the type specified in the
function declaration. The function definition initializes the return value from the
function by assigning the function result to the internal variable with the same name as
the function. The following line from above example illustrates this concept:

maxV = (V(n1) > V(n2)) ? V(n1) : V(n2) ;

A function definition must include an assignment of the function result value to the
internal variable that has the same name as the function name.

4.6.3 Calling a function

A function call is an operand within an expression. The function call has the following
syntax:

Figure 4-3: : Syntax for function call

The order of evaluation of the arguments to a function call is undefined. A function may
not call itself directly or indirectly, that is, recursive functions are not permitted.

The following example usesmaxV function defined in section 4.6.1

V(c29) = maxV(c36, c1) ;

function_call ::=
function _identifier (expression { , expression })

Version 1.0 Verilog-A Language Reference Manual 4-28

User defined functions Expressions

Version 1.0 Verilog-A Language Reference Manual 5-1

Analog Signals Signals

Section 5

Signals

5.1 Analog Signals

Analog signals are distinguished from digital signals in that they are derived from
disciplines. Disciplines are a named set of properties that describe an analog signal.
Disciplines, nodes and branches are described in Section 3, and ports are described in
Section 7.

This section describes signal access mechanisms and operators in Verilog-A HDL.

5.1.1 Access Functions

Signals on nodes, ports, and branches are accessed usingaccess functions. The name of
the access function is taken from the discipline of the node, port, or branch associated
with the signal.

For example, consider a named electrical branchb whereelectrical is a discipline with
V as the access function for the potential andI as the access function for the flow. The
potential (voltage) would be accessed with:

V(b)

and the flow (current) is accessed with

I(b)

Unnamed branches are accessed in a similar manner, except that the access functions are
applied to nodes or ports rather than branches. For example, ifn1 andn2 are electrical
nodes or ports, then

V(n1,n2)

accesses the potential on the unnamed branch fromn1 to n2 and

V(n1)

accesses the potential on the unnamed branch fromn1 to ground. In other words,
accessing the potential from a node or port to a node or port defines an unnamed branch.
Accessing the potential on a single node or port defines an unnamed branch from that
node or port to ground. There can only be one unnamed branch between any two nodes
or ports.

An analogous access method is used for flows.

I(n1,n2)

accesses the flow on the unnamed branch fromn1 to n2.

Version 1.0 Verilog-A Language Reference Manual 5-2

Analog Signals Signals

I(n1)

accesses the flow on the unnamed branch fromn1 to ground.

Thus, accessing the flow from a node or port to a node or port defines an unnamed
branch. Accessing the potential on a single node or port defines an unnamed branch from
that node or port to ground.

5.1.2 Probes and Sources

It is possible to interpret the behavioral descriptions in Verilog-A HDL as a network of
probes and controlled sources. While it is not necessary to do so, it is often helpful for
two reasons,

■ Describe the component with a network of probes and controlled sources, and
then use the simple rules presented here to map the network into a behavioral
description.

■ Often behavioral descriptions that are difficult to decipher can be more easily
understood if it is first converted into a network of probes and controlled sources.

One additional benefit of the probe/source interpretation is that it provides an
unambiguous way of defining the behavior for manipulating signals.

5.1.2.1 Sources

A branch, either named or unnamed, is asource branchif either the potential or the flow
is assigned a value by a contribution statement anywhere in the module. It is apotential
sourceif the branch potential is specified, and it is aflow source if the branch flow is
specified. A branch cannot simultaneously be both a potential and a flow source, though
it can switch between them, in which case it is referred to as being aswitch branch.

Both the potential and the flow of a source branch are accessible in expressions
anywhere in the module. The models for potential and flow sources are shown below:

Version 1.0 Verilog-A Language Reference Manual 5-3

Analog Signals Signals

Figure 5-1: Equivalent circuit models for source branches.

5.1.2.2 Probes

If no value is specified for either the potential or the flow, the branch is aprobe. If the
flow of the branch is used in an expression anywhere in the module, the branch is aflow
probe, otherwise the branch is apotential probe. Using both the potential and the flow
of a probe branch is considered illegal. The models for probe branches are shown below

.

Figure 5-2: Equivalent circuit models for probe branches.

The branch potential of a flow probe is zero. The branch flow of a potential probe is zero.

5.1.3 Examples

The following examples demonstrate how to formulate models and the correspondence
between the behavioral description and the equivalent probe/source model.

f is a probe that measures the flow through the
branch, and p is a probe that measures the potential
across the branch.

f

p

f

p

p f

Version 1.0 Verilog-A Language Reference Manual 5-4

Analog Signals Signals

For simplification, only the node or branch declarations and contribution statements are
shown.

5.1.3.1 The Four Controlled Sources

The model for a voltage controlled voltage source is.

branch (ps,ns) in, (p,n) out;
V(out) <+ A * V(in);

The model for a voltage controlled current source is.

branch (ps,ns) in, (p,n) out;
I(out) <+ A * V(in);

The model for a current controlled voltage source is.

branch (ps,ns) in, (p,n) out;
V(out) <+ A * I(in);

The model for a current controlled current source is.

branch (ps,ns) in, (p,n) out;
I(out) <+ A * I(in);

5.1.3.2 Resistor and Conductor

The model for a linear conductor is

Figure 5-3: Linear conductor model

The assignment toI(cond) makescond a current source branch and V(cond) simply
accesses the optional potential probe built into the current source branch.

v
branch (p,n) cond;
I(cond) <+ G * V(cond);

Gv
G

Version 1.0 Verilog-A Language Reference Manual 5-5

Analog Signals Signals

The model for a linear resistor is

Figure 5-4: Linear resistor model

The assignment toV(res) makesres a potential source branch andI(res) simply
accesses the optional flow probe built into the potential source branch.

5.1.3.3 RLC Circuits

A series RLC circuit is formulated by summing the voltage across the three components

.

It is described as

V(p,n) <+ R*I(p,n) + L* ddt (I(p.n)) + idt (I(p,n))/C;

A parallel RLC circuit is formulated by summing the currents through the three
components

.

It is described as

I(p,n) <+ V(p,n)/R + C* ddt (V(p,n)) + idt (V(p,n))/L;

5.1.3.4 Simple Implicit Diode

Verilog-A HDL allows components to be described with implicit equations. In the
following example, which is a simple diode with a series resistor, the model is implicit
because the diode currentI(a,c) appears on both sides of the contribution operator. The
current of the diode branch is specified, making it a flow source branch. In addition, both
the voltage and current of diode branch is used in the behavioral description.

I(a,c) <+ is * ($limexp ((V(a,c) – rs * I(a,c)) / Vt) – 1);

i

Ri

branch (p,n) res;
V(res) <+ R * I(res); R

v t() Ri t() L
td

d
i t()

1
C
---- i τ() τd

∞–

t

∫+ +=

i t() v t()
R

-------- C
td

d
v t()

1
L
--- v τ() τd

∞–

t

∫++=

Version 1.0 Verilog-A Language Reference Manual 5-6

Analog Signals Signals

5.1.4 Port Branches

With the methods of accessing signals at ports already described, it is possible to access
the signals on the node to which the port is connected. It is also possible to treat the port
itself as a restricted branch such that the flow through the port branch may be probed.
Promoting port branches to support all of the capabilities of branches is under
consideration. Until then, it is not permitted to set the flow or access the potential of a
port branch.

This is shown schematically as

Figure 5-5: Branch Port

In the following discussions,a represents the inside terminal of a branch port, anda’
represents the outside terminal. The terminala’ can not be accessed from within the
module definition and the branch port is denoted by simply giving the port namea twice.

To access the flow of a port, the flow access function is used with the port name
appearing twice as the argument list. For example,

I(a,a) accesses the current through port branch a.

It is also possible to declare a named port branch and use it as a conventional named
branch for flow access.

branch (a,a) in;

As one example of how this capability might be used, consider the junction diodere-
written such that the total diode current is monitored and a message is issued if it exceeds
a given value:

With a simple port, both sides of the port are
indistinguishable. Using port branches the ports
implement a probe branch model.

Simple Port

aa’

Branch Port

Module Module

a’

Version 1.0 Verilog-A Language Reference Manual 5-7

Analog Signals Signals

module diode (a, c);
electrical a, c;
branch (a, c) diode, cap, (a, a) anode;
parameter real is=1e-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin
I(diode) <+ is*($limexp (V(diode)/ $vt) – 1);
I(cap) <+ ddt (tf*I(diode) - 2*cjo* sqrt (phi * (phi * V(cap))));

if (I(anode) > imax)
$strobe ("Warning: diode is melting!");

end
endmodule

The expression V(a,a) is invalid for ports and nodes, where V is the potential access
function.

5.1.5 Switch Branches

Source branches have the ability to switch between being potential and flow sources. To
switch a branch to being a potential source, assign to its potential. To switch a branch to
being a flow source, assign to its flow. This type of branch is useful when modeling ideal
switches and mechanical stops. The full circuit model for a branch is shown below

Figure 5-6: Circuit model for a source branch.

An ideal relay (a controlled switch) can be implemented as

if (closed)
V(p,n) <+ 0;

Position of the switch depends on whether a potential
or flow is assigned to the branch.

f

p

Version 1.0 Verilog-A Language Reference Manual 5-8

Contribution statements Signals

else
I(p,n) <+ 0;

A discontinuity of order zero is assumed to occur when the branch switches and so it is
not necessary to use thediscontinuity function with switch branches.

5.1.6 Unassigned Sources

If a value is not assigned to a branch, the branch flow is set to zero.

Consider

if (closed)
V(p,n) <+ 0;

This example is equivalent to

if (closed)
V(p,n) <+ 0;

else
I(p,n) <+ 0;

5.2 Contribution statements

Verilog-A HDL defines thebranch contribution operator “<+” for the description of
analog behavior. This operator is only valid within theanalog block. Branch contribution
statements are statements that use the branch contribution operators to describe behavior
in terms of a mathematical mapping of input signals to output signals.

5.2.1 Branch Contribution Statements

In general, a branch contribution statement consists of two parts, a left-hand side, and a
right-hand side separated by a branch contribution operator. The right-hand side can be
any expression that evaluates to a real value. The left-hand side specifies the source
branch signal that the right-hand side is to be assigned to. It must consist of an access
function applied to a branch. Hence, analog behaviors can be described using:

V(n1,n2) <+ expression ;

or

I(n1,n2) <+ expression ;

where (n1, n2) represents an unnamed source branch, and V(n1,n2) refers to the
potential on the branch while I(n1,n2) refers to the flow through the branch. The
expression can be linear, nonlinear, or dynamic in nature.

Branch contribution statements implicitly define source branch relations. The branch is
directed from the first node of the access function to the second node. If the second node
is not specified, ground is taken as the reference node.

Version 1.0 Verilog-A Language Reference Manual 5-9

Contribution statements Signals

A branch relation is a path of the flow between two nodes in a module. Each node has
two signals associated with it—the potential of the node and the flow out of the node. In
electrical circuits, the potential of a node is its voltage, whereas the flow out of the node
is its current. Similarly, each branch has two signals associated with it—the potential
across the branch and the flow through the branch.

For source branch contributions, the statement is evaluated as follows:

1. The simulator evaluates the right-hand side.

2. The simulator adds the value of the right-hand side to any previously retained
value for the branch for later assignment to the branch. If there are no previously
retained values, the value of the right-hand side itself is retained.

3. At the end of the simulation cycle, the simulator assigns the retained value to the
source branch.

Contributing a flow to a branch that already has a value retained for the potential results
in the potential being discarded and the branch being converted to a flow source.
Conversely, contributing a potential to a branch that already has a value retained for the
flow results in the flow being discarded and the branch being converted into a potential
source.

The syntax for source contribution statement is shown below:

.

Figure 5-7: Syntax for branch contribution

5.2.2 Indirect Branch Assignments

Verilog-A HDL allows descriptions that implicitly specify a branch voltage or current in
fixed-point form. The branch voltage or current is assigned a value by an expression that
uses the branch voltage or current. This occurred in the simple implicit diode model
above whereI(a,c) appeared on both sides of the contribution operator.

Consider the model for an ideal OPAMP. In this model, the output is driven to the
voltage that results in the input voltage being zero. The constitutive equation is

branch_contribution ::=
bvalue <+ expression ;

bvalue ::=
access_identifier (analog_signal_list)

analog_signal_list ::=
branch_identifier

| node_or_port_identifier
| node_or_port_identifier , node_or_port_identifier

Version 1.0 Verilog-A Language Reference Manual 5-10

Contribution statements Signals

V(in) == 0

This can be formulated in fixed point form as

V(out) <+ V(out) + V(in);

This statement defines the output of the OPAMP to be a controlled voltage source by
assigning toV(out) and defines the input to be high impedance by only probing the input
voltage. The desired behavior results because the description is formulated in such a way
that it reduces toV(in) = 0 . This approach does not result in the right tolerances being
applied to the equation ifout andin have different disciplines.

Verilog-A HDL includes a special syntax that is appropriate in this situation. The above
branch contribution can be rewritten using anindirect branch assignment:

V(out) : V(in) == 0;

which reads “findV(out) such thatV(in) == 0 ” . It indicates thatout should be driven
with a voltage source and the source voltage should be such that the given equation is
satisfied. Any branches referenced in the equation are only probed and not driven. In
particular,V(in) acts as a voltage probe.

The syntax for the indirect assignment statement is

Figure 5-8: Syntax for indirect branch assignment

If there are multiple indirect assignments statements, it is often the case that the targets
can be paired with any equation. Consider the following ordinary differential equation,

indirect_branch_assignement ::=
target : equation ;

target ::=
bvalue

equation ::=
nexpr == expression

nexpr ::=
bvalue

| ddt (bvalue)
| idt (bvalue)

td
dx

f x y z, ,()=

td
dy

g x y z, ,()=

td
dz

h x y z, ,()=

Version 1.0 Verilog-A Language Reference Manual 5-11

Contribution statements Signals

which can be written as

V(x): ddt (V(x)) == f(V(x), V(y), V(z));
V(y): ddt (V(y)) == g(V(x), V(y), V(z));
V(z): ddt (V(z)) == h(V(x), V(y), V(z));

or

V(y): ddt (V(x)) == f(V(x), V(y), V(z));
V(z): ddt (V(y)) == g(V(x), V(y), V(z));
V(x): ddt (V(z)) == h(V(x), V(y), V(z));

or

V(z): ddt (V(x)) == f(V(x), V(y), V(z));
V(x): ddt (V(y)) == g(V(x), V(y), V(z));
V(y): ddt (V(z)) == h(V(x), V(y), V(z));

without affecting the results.

5.2.2.1 Indirect Assignment and Contribution

Indirect assignment is incompatible with contribution. Once a value is indirectly
assigned to a branch, it cannot be contributed to using the branch contribution operator
(‘<+’).

Version 1.0 Verilog-A Language Reference Manual 5-12

Contribution statements Signals

Version 1.0 Verilog-A Language Reference Manual 6-1

Analog procedural block Analog Behavior

Section 6

Analog Behavior

The description of an analog behavior consists of setting up contributions (Section 5) for
various nodes under certain procedural or timing control. This section describes an
analog procedural block, procedural control statements and analog timing control
functions.

6.1 Analog procedural block

Discrete behavioral definitions within Verilog HDL are encapsulated within theinitial
andalways procedural blocks. Everyinitial andalways block starts a separate concurrent
activity flow. For continuous time simulation, the behavioral description is encapsulated
within theanalog procedural block. Verilog-A HDL supports one analog procedural
block in a module definition.

Theanalog procedural block defines the behavior as a procedural sequence of
statements. The conditional and looping constructs are available for defining behaviors
within theanalog procedural block. Because the description is a continuous-time
behavioral description, no blocking event control statements (such as blocking delays,
events or waits) are supported.

The syntax for analog block is as follows:

Figure 6-1: Syntax for analog procedural block

analog_block ::=
analog statement

statement ::=
 null_statement

| block_statement
| branch_contribution
| indirect_branch_assignment
| procedural_assignment
| conditional_statement
| looping_statement
| case_statement
| generate_statement
| event_controlled_statement
| discontinuity_function
| bound_step_function
| last_crossing_function
| system_task_enable

Version 1.0 Verilog-A Language Reference Manual 6-2

Null statement Analog Behavior

The statements within the analog block are used to define the large-signal response of
the module. The behavioral description is a mathematical mapping of input signals to
output signals. The mapping is done with contribution statements of the form

signal <+ expression ;

Theexpression can be any combination of linear, nonlinear, or differential expressions
of module signals, constants and parameters (see Section 5).

The analog block is executed continuously. The simulator calculates the time advance
by computing the time step based on convergence. The procedural statements in the
analog block are executed sequentially. The contributions help form the differential
equations to compute flow and potential values at various nodes.

All analog blocks contained in various modules in a design are considered to be
executing concurrent with respect to each other.

6.2 Null statement

A null statement is a statement that does nothing. It is represented by a semicolon. The
analog procedural block is not allowed to have only a null statement. That is, the
following analog procedural block is illegal

analog ;

A null statement in presence of at least one other statement is allowed.

The syntax for null statement is as follows:

Figure 6-2: Syntax for Null Statement

6.3 Block statement

Theblock statement, also referred to assequential block, is a means of grouping two or
more statements together so that they act syntactically like a single statement. The block
statement is delimited by the keywordsbegin andend . The procedural statements in a
block statement are executed sequentially in the given order.

The following is the formal syntax for a sequential block:

null_statement ::=
;

Version 1.0 Verilog-A Language Reference Manual 6-3

Procedural assignment Analog Behavior

Figure 6-3: : Syntax for the sequential block

6.3.1 Block names

A sequential block can be named by adding: name_of_block after the keywordbegin.
The naming of a block allows local variables to be declared for the block.

All local variables are static—that is, a unique location exists for all variables and
leaving or entering blocks do not affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation
time.

6.4 Procedural assignment

In Verilog-A HDL, the branch contributions and indirect branch assignments are used
for modifying signals. The procedural assignments are used for modifying integer and
real variables. The syntax for procedural assignment is as follows:

Figure 6-4: Syntax for procedural assignment

block_statement ::=
 begin [: block _identifier { block_item_declaration }]

{ statement }
 end

block_item_declaration ::=
 parameter_declaration

| integer_declaration
| real_declaration

procedural_assignment ::=
 lexpr = expression ;

lexpr ::=
integer_ identifier

| real_ identifier
| array_element

array_element ::=
integer_ identifier [constant_expression]

| real_ identifier [constant_expression]

Version 1.0 Verilog-A Language Reference Manual 6-4

Conditional statement Analog Behavior

The left-hand side of a procedural assignment must be an integer or a real identifier or
an element of an integer or real array. The right-hand side expression can be any arbitrary
expression constituted from legal operands and operators as described in Section 4.

6.5 Conditional statement

Theconditional statement (or if-else statement) is used to make a decision as to whether
a statement is executed or not. The syntax of a conditional statement is as follows:

Figure 6-5: : Syntax of conditional statement

If the expression evaluates to true (that is, has a non-zero value), the first statement will
be executed. If it evaluates to false (has a zero value), the first statement will not be
executed. If there is anelse statement and expression is false, the else statement will be
executed.

Since the numeric value of theif expression is tested for being zero, certain shortcuts
are possible. For example, the following two statements express the same logic:

if (expression)
if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is
omitted from a nested if sequence. This is resolved by always associating the else with
the closest previous if that lacks an else. In the example below, the else goes with the
inner if, as shown by indentation.

if (index > 0)
if (i > j)

result = i;
else // else applies to preceding if

result = j;

If that association is not desired, abegin-end block statement must be used to force the
proper association, as shown below.

if (index > 0) begin
if (i > j)

result = i;
end
else result = j;

conditional_statement ::=
if (expression) statement

 [else statement]

Version 1.0 Verilog-A Language Reference Manual 6-5

Case statement Analog Behavior

6.5.1 If-else-if Construct

The following construction occurs so often that it is worth a brief separate discussion:

Figure 6-6: : Syntax of if-else-if construct

This sequence of if statements (known as anif-else-if construct) is the most general way
of writing a multi-way decision. The expressions are evaluated in order; if any
expression is true, the statement associated with it will be executed, and this will
terminate the whole chain. Each statement is either a single statement or a sequential
block of statements.

The last else part of the if-else-if construct handles the none-of-the-above or default case
where none of the other conditions were satisfied. Sometimes there is no explicit action
for the default; in that case, the trailing else statement can be omitted or it can be used
for error checking to catch an impossible condition.

6.6 Case statement

Thecase statement is a multi-way decision statement that tests whether an expression
matches one of a number of other expressions, and branches accordingly. The case
statement has the following syntax:

Figure 6-7: : Syntax for case statement

Thedefault statement is optional. Use of multiple default statements in one case
statement is illegal.

The case expression and the case item expression can be computed at runtime; neither
expression is required to be a constant expression.

if_else_if_statement ::=
if (expression) statement
{ else if (expression) statement }
else statement

case_statement ::=
 case (expression) case_item { case_item } endcase

case_item ::=
 expression { , expression } : statement

| default [:] statement

Version 1.0 Verilog-A Language Reference Manual 6-6

Looping statements Analog Behavior

Thecase item expressions are evaluated and compared in the exact order in which they
are given. During the linear search, if one of thecase item expressions matches the case
expression given in parentheses, then the statement associated with that case item is
executed. If all comparisons fail, and the default item is given, then the default item
statement is executed. If the default statement is not given, and all of the comparisons
fail, then none of the case item statements are executed.

6.6.1 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant
expression shall be compared against case item expressions.

The following example demonstrates the usage by modeling a 3-bit priority encoder.

integer [2:0] encode ;

case (1)
encode[2] : $display (“Select Line 2”) ;
encode[1] : $display (“Select Line 1”) ;
encode[0] : $display (“Select Line 0”) ;
default $strobe (“Error: One of the bits expected ON”);

endcase

Note that the case expression is a constant expression (1). The case items are expressions
(array elements), and are compared against the constant expression for a match.

6.7 Looping statements

There are four kinds of looping statements. These statements provide a means of
controlling the execution of a statement zero, one, or more times.

forever repeatedly executes a statement.

repeat executes a statement a fixed number of times. Evaluation of the constant
expression decides how many times a statement is executed.

whileexecutes a statement until an expression becomes false. If the expression starts out
false, the statement is not executed at all.

for controls execution of its associated statement(s) by a three-step process, as follows:

1. executes an assignment normally used to initialize an integer that controls the
number of loops executed

2. evaluates an expression—if the result is zero, the for-loop exits, and if it is not
zero, the for-loop executes its associated statement(s) and then perform step 3.

3. executes an assignment normally used to modify the value of the loop-control
variable, then repeats step 2 above.

Version 1.0 Verilog-A Language Reference Manual 6-7

Generate statement Analog Behavior

The following shows the syntax for various looping statements:

Figure 6-8: : Syntax for the looping statements

Analog operators are not allowed in any of the four looping statements.

6.8 Generate statement

Thegenerate statement is a looping construct that is unrolled at elaboration time.
Generate statement is the only looping statement that can contain analog operators.

The syntax of generate statement is as follows:

.

Figure 6-9: Syntax for generate statement

The index must not be assigned or modified in any way inside the loop. In addition, it is
local to the loop and is expanded when the loop is unrolled. Even if there is a local
variable with the same name as the index and the variable is modified as a side effect of
a function called from within the loop, the loop index is unaffected.

The start and end bounds and increment are constant expressions. They are only
evaluated at elaboration time. If the expressions used for the increment and bounds
change during the simulation, it does not affect the behavior of the generate statement.

looping_statement ::=
forever statement

| repeat (expression) statement
| while (expression) statement
| for (procedural_assignment ; expression ;

procedural_assignment) statement

generate_statement ::=
generate index _identifier (start_expr , end_expr [, incr_expr])

statement

start_expr ::=
constant_expression

end_expr ::=
constant_expression

incr_expr ::=
constant_expression

Version 1.0 Verilog-A Language Reference Manual 6-8

Analog events Analog Behavior

If the lower bound is less than the upper bound and the increment is negative, or if the
lower bound is greater than the upper bound and the increment is positive, then the
generate statement does not execute.

If the lower bound equals the upper bound, the increment is ignored and the statement
execute once. If the increment is not given, it is taken to be +1 if the lower bound is less
than the upper bound, and -1 if the lower bound is greater than the upper bound.

The statement, which can be a sequential block, is replicated with all occurrences of
index in the statement replaced by a constant. In the first instance of the statement, the
index is replaced with the lower bound. In the second, it is replaced by the lower bound
plus the increment. In the third, it is replaced by the lower bound plus two times the
increment. This pattern is repeated until the lower bound plus a multiple of the increment
is greater than the upper bound.

Example:

This module implements a continuously running (not clocked) analog-to-digital
converter.

module adc(in,out) ;
parameter bits=8, fullscale=1.0, delay=0.0, ttime=10n ;
input in ;
output [0:bits-1] out ;
electrical in, out ;
real sample, thresh ;

analog begin
thresh = fullscale/2.0 ;
generate i (bits-1,0) begin

V(out[i]) <+ transition (sample > thresh, delay, ttime) ;
if (sample > thresh) sample = sample - thresh ;
sample = 2.0 * sample ;

end
end

endmodule

6.9 Analog events

The analog behavior of a component can be controlled using analog events. The analog
events have the following characteristics:

1. analog events have no time duration

2. analog events can be triggered and detected in different parts of the behavioral
model.

3. analog events do not block the execution of an analog block

4. analog events can be detected using@ operator

Version 1.0 Verilog-A Language Reference Manual 6-9

Analog events Analog Behavior

5. analog events do not hold any data

There are two types of analog events -global events andmonitored events.

6.9.1 Event detection

Analog event detection consist of an event expression followed by a procedural
statement. It takes the form:

Figure 6-10: Syntax for event detection

The procedural statement following the event expression is executed whenever the event
expression changes. The analog event detection is non-blocking, meaning that the
execution of the procedural statement is skipped unless the analog event has occurred.
The event expression consists of one or more signal names, global events, or monitored
events separated byor operator.

The parenthesis around the event expression are required.

6.9.2 Event OR operator

The "OR-ing" of any number of events can be expressed such that the occurrence of any
one of the events trigger the execution of the procedural statement that follows it. The
keywordor is used as an event or operator.

For example,

analog begin
@(initial_step or cross (V(smpl)-2.5,+1))

V(out) <+ 0 ;
end

Here,initial_step is a global event andcross() returns a monitored event.V(out)

is set to0 when one of the two events occur.

event_controlled_statement ::=
@ (event_expression) statement

event_expression ::=
 simple_event [or event_expression]

simple_event ::=
 global_event

| event_function
| identifier

Version 1.0 Verilog-A Language Reference Manual 6-10

Analog events Analog Behavior

6.9.3 Global events

The global events are generated by the simulator at various stages of the simulation. The
user model can not generate these events. These events are detected by using the name
of the global event in an event expression with the @ operator.

The global events are pre-defined in Verilog-A HDL. These events can not be redefined
in a model.

The following are pre-defined global events:

Figure 6-11: Global events

The initial_stepand final_stepgenerate global events on the first and the last time-step
in a simulation respectively. They are useful when performing actions that should only
occur at the beginning or end of an analysis.

The following example measures the bit-error rate of a signal and prints the result at the
end of the simulation.

module bitErrorRate (in, ref) ;
input in, ref ;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;
integer bits, errors ;

analog begin
@(initial_step) begin

bits = 0 ;
errors = 0 ;

end

@(timer (0, period)) begin
if ((V(in) > thresh) != (V(ref) > thresh))

errors = errors + 1 ;
bits = bits + 1 ;

end

@(final_step)
$strobe ("bit error rate = %f%%", 100.0 * errors / bits) ;

end
endmodule

global_event ::=
initial_step [(analysis_list)]

| final_step [(analysis_list)]

analysis_list ::=
 analysis_name { , analysis_name }

analysis_name ::=
" analysis_ identifier "

Version 1.0 Verilog-A Language Reference Manual 6-11

Analog events Analog Behavior

The initial_step and final_step events take a list of quoted strings as optional arguments.
The strings are compared to the name of the analysis being run. If any string matches the
name of the current analysis name, then the simulator generates an event on the first step
and the last step of that particular analysis, respectively.

If no arguments are present, then the simulator generates event in any analysis where
time is the independent variable (such as a transient analysis).

6.9.4 Monitored events

The monitored events are detected using event functions with the@ operator. The
triggering of the monitored event is implicit due to change in signals, simulation time, or
other runtime conditions.

Figure 6-12: Monitored events

6.9.4.1 Cross Function

Thecross function is used for generating a monitored analog event to detect threshold
crossings in analog signals.

Figure 6-13: Syntax for Cross function

The cross function generates events when the expression crosses zero in the specified
direction. In addition, cross controls the timestep to accurately resolve the crossing. If
the direction indicator is 0 or not specified, then the event and timestep control occur on
both positive and negative crossings of the signal. If direction indicator is +1 (–1), then

event_function ::=
 cross_function

| timer_function

cross_function ::=
cross (expression [, opt_args])

opt_args ::=
direction [, time_tol [, expression_tol]]

direction ::=
+1 | -1

time_tol ::=
expression

expression_tol ::=
expression

Version 1.0 Verilog-A Language Reference Manual 6-12

Analog events Analog Behavior

the event and timestep control only occurs on positive (negative) transitions of the signal.
For any other transitions of the signal, the cross function does not generate an event.

Both the time and expression tolerances must be positive. If the expression tolerance is
required, both the time and expression tolerances must be satisfied at the crossing.

The following description of a sample-and-hold illustrates how thecross function might
be used.

module sh (in, out, smpl) ;
output out ;
input in, smpl ;
electrical in, out, smpl ;
real state ;

analog begin
@(cross (V(smpl) - 2.5, +1))

state = V(in) ;
V(out) <+ transition (state, 0, 10n) ;

end
endmodule

The cross function maintains internal state and has the same restrictions as analog
operators. In particular, it must not be used inside a conditional statement (if and case)
unless the conditional expression that controls the statement consists of terms that cannot
change its value during the course of an analysis. In particular, the conditional expression
can only consist of constants, parameter values, and the analysis() function. In addition,
cross function is not allowed in the forever, repeat, while, and for iteration statements. It
is allowed in generate statement.

6.9.4.2 Timer Function

Thetimer function is used to generate analog event to detect specific points in time.

Figure 6-14: Syntax for timer function

The timer function schedules an event that occurs at an absolute time (as specified by
start_time). The analog simulator places a time point at, or just beyond, the time of the
event. Ifperiod is specified, then the timer function schedules subsequent events at
multiples of the period.

timer_function ::=
timer (start_time [, period])

start_time ::=
 expression

period ::=
 expression

Version 1.0 Verilog-A Language Reference Manual 6-13

Announcing Discontinuity Analog Behavior

A pseudo-random bit stream generator is an example how the timer function might be
used.

module bitStream (out) ;
output out ;
electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin
@(timer (0, period))

x = $random + 0.5 ;
V(out) <+ transition (x, 0.0, period/100.0) ;

end
endmodule

6.10 Announcing Discontinuity

The discontinuityfunction is used to give hints to the simulator about the behavior of the
module so that it can control the simulation algorithms to get accurate results in
exceptional situations. It does not directly specify the behavior of the module. The
discontinuity function should be executed whenever the analog behavior changes
discontinuously.

Because discontinuous behavior can cause convergence problems, discontinuity should
be avoided whenever possible.

The filter functions (transition, slew, laplace, etc.) are provided to smooth discontinuous
behavior. However, in some cases it is not possible to implement the desired
functionality using these filters. In this case,discontinuityfunction should be executed
when the signal behavior changes abruptly.

Figure 6-15: Syntax for discontinuity function

Thediscontinuityfunction takes one integer argument that indicates the degree of the
discontinuity. Discontinuity(i) would imply that there is a discontinuity in thei’th
derivative of the constitutive equation with respect to either a signal value or time where
i must be non-negative. Hence, discontinuity(0) indicates a discontinuity in the equation,
discontinuity(1) indicates a discontinuity in its slope, etc.

Discontinuity created by switch branches and built-in system functions, such as
transition() and slew() do not need to be announced.

discontinuity_function ::=
discontinuity (constant_expression)

Version 1.0 Verilog-A Language Reference Manual 6-14

Announcing Discontinuity Analog Behavior

The following example uses the discontinuity function to model a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input pin, nin ;
electrical c1, c2, pin, nin ;
parameter real r=1 ;

analog begin
@(cross (V(pin,nin))) discontinuity (0) ;
if (V(pin,nin) >= 0)

I(c1,c2) <+ V(c1,c2)/r;
else

I(c1,c2) <+ 0 ;
end

endmodule

In this example, cross function controls the time step so that the time when the relay
changes position is accurately resolved. It also triggers the discontinuity function that
causes the simulator to react properly to the discontinuity. This would have been handled
automatically if the type of the branch (c1,c2) had been switched between voltage and
current.

Another example is a source that generates a triangular wave. In this case, neither the
model nor the waveforms generated by the model are discontinuous. Rather, the
waveform generated is piecewise linear with discontinuous slope. If the simulator is
aware of the abrupt change in slope, it can adapt the integration method to eliminate
problems that result from the discontinuous slope (typically changing to a first order
integration method).

module triangle (out) ;
output out ;
voltage out ;
parameter real period = 10.0, amplitude = 1.0 ;
integer slope ;
real offset ;

analog begin
@(timer (0, period) begin

slope = +1 ;
offset = $realtime ;
discontinuity (1) ;

end
@(timer (period/2, period) begin

slope = -1 ;
offset = $realtime ;
discontinuity (1) ;

end
V(out) <+ amplitude * slope *

(4 * ($realtime - offset) / period - 1) ;
end

endmodule

Version 1.0 Verilog-A Language Reference Manual 6-15

Time related functions Analog Behavior

 Finally, here is a case where timer function is used without using a discontinuity
function. In this case, the event generated by the timer() function indicates that a
measurement should be printed, but that neither the model nor the waveforms contain
discontinuity. In this case, switching to a first order integration method would result in a
degradation of accuracy.

module sampler (in) ;
input in ;
voltage in ;
parameter real period = 10.0 ;

analog @ (timer (0, period))
$strobe ("%g\t%g", $realtime , V(in)) ;

endmodule

6.11 Time related functions

There are two functions, bound_step and last_crossing, related to simulation time.

6.11.1 Bounding the time step

Thebound_step function puts a bound on the next time step. It does not specify exactly
what the next time step should be, but it bounds how far the next time point can be from
the present time point. The function takes the maximum time step as an argument. It does
not return a value. The syntax is as follows:

Figure 6-16: Syntax for bound_step function

The example below implements a sinusoidal voltage source and uses the bound_step()
function to assure that the simulator faithfully follows the output signal (it is forcing 20
points per cycle).

module vsine(out) ;
output out ;
voltage out ;
parameter real freq=1.0, ampl=1.0, offset=0.0 ;

bound_step_function ::=
bound_step (max_step)

max_step ::=
 constant_expression

Version 1.0 Verilog-A Language Reference Manual 6-16

Time related functions Analog Behavior

analog begin
V(out) <+ ampl * sin (2.0 * ‘M_PI * freq * $realtime) + offset ;
bound_step (0.05 / freq) ;

end
endmodule

6.11.2 Last_Crossing Function

Related to the cross function, thelast_crossing function returns the simulation time when
a signal expression last crossed 0.

Figure 6-17: Syntax for last_crossing function

Thedirection flag is interpreted in the same way as with the cross function. The
last_crossing function is subject to the same usage restrictions as the cross function.

The last_crossing function does not control the timestep to get accurate results, and uses
linear interpolation to estimate the time of the last crossing. However, it can be used with
the cross function for improved accuracy.

The following example measures the period of its input signal using cross and
last_crossing functions.

module period(in) ;
input in ;
voltage in ;
integer crossings ;
real latest, previous ;

analog begin
@(initial_step) begin

crossings = 0 ;
previous = 0 ;

end

@(cross (V(in), +1)) begin
crossings = crossings + 1 ;
previous = latest ;

end
latest = last_crossing (V(in), +1) ;

last_crossing_function ::=
last_crossing (expression [, direction])

Version 1.0 Verilog-A Language Reference Manual 6-17

Time related functions Analog Behavior

@(final_step) begin
if (crossings < 2)

$strobe ("Could not measure period.") ;
else

$strobe ("period = %g, crossings = %d",
 latest-previous, crossings) ;

end
end

endmodule

Before the expression crosses zero for the first time, the last_crossing function returns a
-inf .

Version 1.0 Verilog-A Language Reference Manual 6-18

Time related functions Analog Behavior

Version 1.0 Verilog-A Language Reference Manual 7-1

Modules Hierarchical Structures

Section 7

Hierarchical Structures

Verilog-A HDL supports a hierarchical hardware description by allowing modules to be
embedded within other modules. Higher-level modules create instances of lower-level
modules and communicate with them through input, output, and bidirectional ports.

To describe a hierarchy of modules, the user provides textual definitions of various
modules. Each module definition stands alone; the definitions are not nested. Statements
within the module definitions create instances of other modules, thus describing the
hierarchy.

7.1 Modules

A module definition is enclosed between the keywordsmodule andendmodule. The
identifier following the keywordmodule is the name of the module being defined. The
optional list of ports specify an ordered list of the module’s ports. The order used can be
significant when instantiating the module (section 7.1.2). The identifiers in this list must
be declared in input, output, and inout declaration statements within the module
definition. The module items define what constitutes a module, and include many
different types of declarations and definitions. A module definition can have at most one
analog block.

Version 1.0 Verilog-A Language Reference Manual 7-2

Modules Hierarchical Structures

Figure 7-1: Syntax for module

7.1.1 Top-level modules

Top-level modules are modules that are included in the source text but are not
instantiated, as described in section 7.1.2.

module_declaration ::=
 module module _identifier [list_of_ports] ;
 [module_items]

endmodule

list_of_ports ::=
(port { , port })

port ::=
 port_expression

| . port _identifier ([port_expression])

port_expression ::=
port _identifier

| port _identifier [constant_expression]
| port _identifier [constant_range]

constant_range ::=
 msb _constant_expression : lsb _constant_expression

module_items ::=
 { module_item }

| analog_block

module_item ::=
 module_item_declaration

| parameter_override
| module_instantiation

module_item_declaration ::=
 parameter_declaration

| input_declaration
| output_declaration
| inout_declaration
| integer_declaration
| node_declaration
| real_declaration

parameter_override ::=
 defparam list_of_param_assignments ;

Version 1.0 Verilog-A Language Reference Manual 7-3

Modules Hierarchical Structures

7.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself.
Module definitions do not nest. That is, one module definition does not contain the text
of another module definition within itsmodule-endmodule keyword pair. A module
definition nests another module byinstantiating it. Themodule instantiation statement
creates one or more namedinstances of a defined module.

The following is the syntax for specifying instantiations of modules:

Figure 7-2: : Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of
instances to be created.

module_instantiation ::=
module _identifier [parameter_value_assignment] instance_list

parameter_value_assignment ::=
(ordered_param_override_list)

| # (named_param_override_list)

ordered_param_override_list ::=
 expression { , expression }

named_param_override_list ::=
 named_param_override { , named_param_override }

ordered_param_override ::=
. parameter_identifier (expression)

instance_list ::=
 module_instance { , module_instance } ;

module_instance ::=
 name_of_instance ([list_of_module_connections])

name_of_instance ::=
module_instance_ identifier [range]

list_of_module_connections ::=
 ordered_port_connection { , ordered_port_connection }

| named_port_connection { , named_port_connection }

ordered_port_connection ::=
 [expression]

named_port_connection ::=
. port_identifier ([expression])

range ::=
[constant_expression : constant_expression]

Version 1.0 Verilog-A Language Reference Manual 7-4

Modules Hierarchical Structures

One or more module instances (identical copies of a module definition) can be specified
in a single module instantiation statement.

The list of module connections can be provided only for modules defined with ports. The
parentheses, however, are always required. When a list of module connections is given,
the first element in the list connects to the first port, the second to the second port, and
so on. See section 7.3 for a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a node identifier or a sub-range of a vector
node. The example below illustrates a comparator and an integrator (lower-level
modules) which are instantiated in sigma-delta A/D converter module (the higher-level
module).

module comparator(cout, inp, inm);
output cout;
input inp, inm;
electrical cout, inp, inm;
parameter real td = 1n, tr = 1n, tf = 1n;

analog begin
@cross (V(inp) - V(inm), 0)

V(cout) <+ transition ((V(inp) > V(inm)) ? 1 : 0, td, tr, tf);
end
endmodule

module integrator(out, in);
output out;
input in;
electrical in, out;
parameter real gain = 1.0;
parameter real ic = 0.0;

analog begin
V(out) <+ gain*idt(V(in), ic);

end
endmodule

module sigmadelta(out, ref, in);
output out;
input ref, in;

comparator C1(.cout(aa0), .inp(in), .inm(aa2));
integrator #(1.0) I1(.out(aa1), .in(aa0));
comparator C2(out, aa1, ground);
d2a #(.width(1)) D1(aa2, ref, out); // A D/A converter

endmodule

in out

C1 C2I1

D1

aa1aa0

ground
aa2

ref

Version 1.0 Verilog-A Language Reference Manual 7-5

Overriding module parameter values Hierarchical Structures

The comparator instance C1 and the integrator instance I1 use named port connections,
whereas the comparator instance C2 and the d2a (not described here) instance D1 uses
ordered port connection.

The integrator instance I1 overrides gain parameter positionally, whereas the d2a
instance D1 overrides width parameter by named association.

7.2 Overriding module parameter values

When one module instantiates another module, it can alter the values of any parameters
declared within the instantiated module. There are three ways to alter parameter values:
thedefparam statement, which allows assignment to parameters using their hierarchical
names,module instance parameter value assignment by order, which allows values to
be assigned in-line during module instantiation in the order of their declaration, and
module instance parameter value assignment by name, which allows values to be
assigned in-line during module instantiation by explicitly associating parameter names
with the overriding values.

7.2.1 Defparam statement

Using thedefparam statement, parameter values can be changed in any module instance
throughout the design using the hierarchical name of the parameter. See section 7.4 for
hierarchical names.

The expression on the right hand side of the defparam assignments must be a constant
expression involving only constant numbers and references to parameters. The
referenced parameters (on the right hand side of the defparam) must be declared in the
same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value
override assignments together in one module.

Version 1.0 Verilog-A Language Reference Manual 7-6

Overriding module parameter values Hierarchical Structures

7.2.2 Module instance parameter value assignment by order

An alternative method for assigning values to parameters within module instances
supplies values for particular instances of a module to any parameters that have been
specified in the definition of that module.

The order of the assignments in module instance parameter value assignment must
follow the order of declaration of the parameters within the module. It is not necessary
to assign values to all of the parameters within a module when using this method.
However, it is not possible to skip over a parameter assignment. Therefore, to assign
values to a subset of the parameters declared within a module, the declarations of the
parameters that make up this subset must precede the declarations of the remaining
(optional) parameters. An alternative is to assign values to all of the parameters, but use
the default value (the same value assigned in the declaration of the parameter within the
module definition) for those parameters that do not need new values.

Consider the following example, where the parameters within module instancemod_a
are changed during instantiation.

module tgate;
electrical io1,io2,control,control_bar;
mosn m1 (io1, io2, control);
mosp m2 (io1, io2, control_bar);
endmodule

module mosp (source,drain,gate);
parameter gate_length = 0.3e-6,

 gate_width = 4.0e-6;

spice_pmos #(.L(gate_length),.W(gate_width)) p(gate,source,drain);

endmodule

module mosn (source,drain,gate);
parameter gate_length = 0.3e-6,

 gate_width = 4.0e-6;

spice_nmos #(.L(gate_length),.W(gate_width)) n(gate,source,drain);

endmodule

module annotate;
defparam

tgate.m1.gate_width = 5e-6,
tgate.m2.gate_width = 10e-6;

endmodule

Version 1.0 Verilog-A Language Reference Manual 7-7

Overriding module parameter values Hierarchical Structures

7.2.3 Module instance parameter value assignment by name

The third method of overriding parameters for a module instance is an explicit
association between the name of the parameter and the new value being assigned to that
parameter. The name of the parameter must be preceded by a period (.) and must be the
name of a parameter in the definition of the module being instantiated. The overriding
value for each parameter must be a constant expression and must be enclosed in
parenthesis (()). Only those parameters whole value is being overridden need
specification.

In the following example of instantiating a voltage-controlled oscillator, the parameters
are specified on a named-association basis much they are for ports.

vco #(.centerFreq(5000), .convGain(1000)) vco1(lo_out, rf_in);

Here, the name of the instantiated vco module isvco1. ThecenterFreq parameter is
passed a value of 5000, and theconvGain parameter is passed a value of 1000. The
positional assignment mechanism for ports assignslo_out as the first node, andrf_in as
the second node ofvco1.

7.2.4 Parameter override precedence

If the value of a parameter is overridden using defparam statement as well as module
instance parameter value assignments (see section 7.2.2 and section 7.2.3), the value
assignment specified by the defparam statement is retained and the other value
assignments are ignored.

If the value of a parameter is overridden using one of the three forms at different levels
of module hierarchy, the value assignment done in the hierarchically highest level of
module is retained and the other value assignments are ignored.

If the hierarchical relationship between the modules containing defparam statements
cannot be determined, it must be reported as an error.

module m;
voltage clk;
electrical out_a, in_a;
electrical out_b, in_b;

// create an instance and set parameters
mosp #(2e-6,1e-6) weakp(out_a, in_a, clk);
// create an instance leaving default values
mosp plainp(out_b, in_b, clk);
endmodule

Version 1.0 Verilog-A Language Reference Manual 7-8

Ports Hierarchical Structures

7.2.5 Parameter dependence

A parameter (for example,gate_cap) can be defined with an expression containing
another parameter (for example,gate_width or gate_length). Since
gate_cap depends on the value ofgate_width and gate_length , a
modification ofgate_width or gate_length changes the value ofgate_cap .
For example, in the following parameter declaration, an update ofgate_width ,
whether by defparam statement or in an instantiation statement for the module that
defined these parameters, automatically updatesgate_cap.

parameter
 gate_width = 0.3e-6,
 gate_length = 4.0e-6,
 gate_cap = gate_length * gate_width * ‘COX;

7.3 Ports

Ports provide a means of interconnecting instances of modules. For example, if a module
A instantiates module B, the ports of module B are associated with either the ports or the
internal nodes of module A. The top-level module does not have ports, so every port is
eventually associated with a node.

7.3.1 Port association

The syntax for a port association is given below. It is the completion of the syntax
presented in section 7.1.

Figure 7-3: Syntax for port

The port expression in the port definition can be one of the following:

– a simple node identifier
– a scalar member of a vector node or port declared within the module
– a sub-range of a vector node or port declared within the module

port ::=
 port_expression

| . port _identifier (port_expression)
port_expression ::=

port _identifier
| port _identifier [constant_expression]
| port _identifier [constant_range]

constant_range ::=
msb_constant_expression : lsb _constant_expression

Version 1.0 Verilog-A Language Reference Manual 7-9

Ports Hierarchical Structures

The two types of module port definitions cannot be mixed; the ports of a particular
module definition must all be defined by order or all by name. The port expression is
optional because ports can be defined that do not connect to anything internal to the
module.

7.3.2 Port declarations

The type and direction of each port listed in the module definition’s list of ports are
declared in the body of the module.

7.3.2.1 Port type

The type of a port is declared by giving its discipline. If the type of a port is not declared,
the port can only be used in a structural description (it can be passed to instances of
modules, but cannot be accessed in a behavioral description).

Figure 7-4: Syntax for port type declarations

7.3.2.2 Port direction

The direction of a port can be specified asinput , output, or inout (bidirectional). If the
direction is specified as being an input port, then the module will only monitor the
signals at the port, and not modify them. That is, within the module the port can only be
passed into other modules as input ports and the signals on the ports can only be used in
expressions, they cannot be used on the left side of a contribution statement. If the
direction is specified as being an output port, then the module will only affect the signals
at the port, but not be affected by them. Thus, the port can be passed to instances of other
modules as output ports and the signals on the ports cannot be used in expressions but
can be used on the left side of a contribution statement. Finally, ports that are declared
as being bidirectional are not subject to these restrictions. If the direction of the port is
not specified, it is taken to be bidirectional. The syntax for port declarations is as follows:

Figure 7-5: Syntax for port direction declarations

node_declaration ::=
discipline _identifier [range] port_identifiers ;

port_identifiers ::=
port _identifier { , port _identifier }

input_declaration ::= input [range] list_of_port_identifiers ;
output_declaration ::= output [range] list_of_port_identifiers ;
inout_declaration ::= inout [range] list_of_port_identifiers ;

Version 1.0 Verilog-A Language Reference Manual 7-10

Ports Hierarchical Structures

A port can be declared in both a port type declaration and a port direction declaration. If
a port is declared as a vector, the range specification between the two declarations of a
port must be identical.

Note: Implementations may limit maximum number of ports in a module definition, but
will at least be 256.

7.3.3 Connecting module ports by ordered list

One method of making the connection between the ports listed in a module instantiation
and the ports defined by the instantiated module is the ordered list—that is, the ports
listed for the module instance must be in the same order as the ports listed in the module
definition.

module adc4 (out, rem, in);
output [3:0] out ; output rem;
input in;
electrical [3:0] out;
electrical in, rem, rem_chain;

adc2 hi2 (out[3:2], rem_chain, in) ;
adc2 lo2 (out[1:0], rem, rem_chain) ;
endmodule

module adc2 (out, remainder, in);
output [1:0] out ; output remainder;
input in;
electrical [1:0] out ;
electrical in, remainder, r;

adc hi1 (out[1], r, in) ;
adc lo1 (out[0], remainder, r) ;
endmodule

module adc (out, remainder, in);
output out, remainder;
input in;
electrical out, in, remainder;
integer d;

analog begin
d = (V(in) > 0.5) ;
V(out) <+ transition (d) ;
V(remainder) <+ 2.0 * V(in) ;
if (d)

V(remainder) <+ -1.0 ;
end

endmodule

Version 1.0 Verilog-A Language Reference Manual 7-11

Ports Hierarchical Structures

7.3.4 Connecting module ports by name

The second way to connect module ports consists of explicitly linking the two names for
each side of the connection—the name used in the module definition, followed by the
name used in the instantiating module. This compound name is then placed in the list of
module connections. The name of port must be the name specified in the module
definition. The name of port cannot be a bit select or a part select.

The port expression must be the name used by the instantiating module and can be one
of the following:

– a simple node identifier
– a scalar member of a vector node or port declared within the module
– a sub-range of a vector node or port declared within the module

The port expression is optional so that the instantiating module can document the
existence of the port without connecting it to anything. The parentheses are required.

The two types of module port connections can not be mixed; connections to the ports of
a particular module instance must be all by order or all by name.

Since these connections were made by port name, the order in which the connections
appear is irrelevant.

7.3.5 Port connection rules

The following rules govern the way module ports are declared and the way they are
interconnected.

module adc4 (out, rem, in);
input in;
output [3:0] out; output rem;
electrical [3:0] out;
electrical in, rem, rem_chain;

adc2 hi (.in(in), .out(out[3:2]), .remainder(rem_chain)) ;
adc2 lo (.in(rem_chain), .out(out[1:0]), .remainder(rem)) ;
endmodule

module adc2 (out, in, remainder);
output [1:0] out; output remainder;
input in;
electrical [1:0] out;
electrical in, remainder, r;

adc hi1 (out[1], r, in) ; // adc is same as defined in section 7.3.3
adc lo1 (out[0], remainder, r) ;
endmodule

Version 1.0 Verilog-A Language Reference Manual 7-12

Ports Hierarchical Structures

7.3.5.1 Compatible discipline rule

All ports connected to a node must be compatible with each other as well as to the
discipline of the node. For discussion on compatible disciplines, see section 3.4.

Ports of any discipline are compatible when connected to a ground node.

7.3.5.2 Matching size rule

A scalar port can be connected to a scalar node, and a vector port can be connected to a
vector node of the matching width. In other words, sizes of the ports and nodes must
match.

7.3.6 Inheriting Port Natures

If a node is missing a nature, it will inherit that nature from any port that connects to it.
Typically such a situation occurs when

— a node is either implicitly or explicitly declared with an empty discipline.

— a conservative port connects to a node that is declared as a signal flow discipline.

— a signal-flow port with a potential nature connects to a signal-flow node declared
with a flow nature, or visa versa.

As additional ports connect to the same node, it is possible for conflicts to develop. For
example, connecting either an electrical or a mechanical port to awire node results in no
conflicts, but connecting both to the samewire node does result in conflicts.

At each node there may be many different values of the absolute toleranceabstol. This
may be because various ports connecting to the node have different, yet compatible,
natures for either the potential, the flow, or both. Even if the natures are identical, the
value ofabstol may be overridden in the discipline of one or more of the ports. In such
cases, all of the ablsolute tolerances must be satisfied at the node. This leads to applying
the smallest tolerance value for all calculations involving such nodes.

7.3.7 Multi-disciplinary example

The example below shows how an application that spans multiple disciplines can be
modeled in Verilog-A. The example models a DC-motor driven by a voltage source.

Version 1.0 Verilog-A Language Reference Manual 7-13

Hierarchical names Hierarchical Structures

7.4 Hierarchical names

Every identifier in a Verilog-A HDL description has a uniquehierarchical path name.
The hierarchy of modules and the definition of items such as named blocks within the
modules define these names. The hierarchy of names can be viewed as a tree structure,
where each module instance or a named begin-end block defines a new hierarchical
level, or scope, in a particular branch of the tree.

At the top of the name hierarchy are the names of modules of which no instances have
been created. It is theroot of the hierarchy. Inside any module, each module instance,

module motorckt();
parameter real freq=100;

electrical drive, gnd;
mechanical shaft;

motor m1 (drive, gnd, shaft);
vsource #(.freq(freq), .ampl(1.0)) v1 (drive, gnd);

endmodule

// vp: positive terminal [V,A] vn: negative terminal [V,A]
// shaft:motor shaft [rad,Nm]
//
// INSTANCE parameters
// Km = motor constant [Vs/rad] Kf = flux constant [Nm/A]
// j = inertia factor [Nms^2/rad] D= drag (friction) [Nms/rad]
// Rm = motor resistance [Ohms] Lm = motor inductance [H]
//
// A model of a DC motor driving a shaft

module motor(vp, vn, shaft);
inout vp, vn, shaft;
electrical vp, vn ;
mechanical shaft ;

parameter real Km = 4.5, Kf = 6.2;
parameter real j = .004, D = 0.1;
parameter real Rm = 5.0, Lm = .02;

analog begin
V(vp, vn) <- Km*W(shaft) + Rm*I(vp, vn) + ddt(Lm*I(vp, vn));
T(shaft) <- Kf*I(vp, vn) - D*W(shaft) - ddt(j*W(shaft));

end
endmodule

Version 1.0 Verilog-A Language Reference Manual 7-14

Hierarchical names Hierarchical Structures

and named begin-end block define a new branch of the hierarchy. Named blocks within
named blocks also create new branches.

Each node in the hierarchical name tree is treated as a separate scope with respect to
identifiers. A particular identifier can be declared at most once in any scope.

Any named object can be referenced uniquely in its full form by concatenating the names
of the module instance or named blocks that contain it. The period character (.) is used
to separate each of the names in the hierarchy. The complete path name to any object
starts at a top-level module. This path name can be used from any level in the description.
The first name in a path name can also be the top of a hierarchy that starts at the level
where the path is being used.

Figure 7-6: : Hierarchy in a model

module samplehold (in, cntrl, out); module amp(inp, inm, out) ;
input in, cntrl ; input inp, inm ;
output out ; output out ;
electrical in, cntrl, out ; electrical inp, inm, out ;
electrical store, sample ; parameter real gain=1e5;
parameter real vthresh = 0.0 ;
parameter real cap = 10e-9 ; analog begin

V(out) <+ gain*V(inp,inm) ;
amp op1 (in, sample, sample) ; end
amp op2(store, out, out) ; endmodule

analog begin
I(store) <+ cap * ddt (V(store)) ;
if (V(cntrl) > vthresh)

V(store, sample) <+ 0 ;
else

I(store, sample) <+ 0 ;
end

endmodule

op2 op1

samplehold

Version 1.0 Verilog-A Language Reference Manual 7-15

Scope rules Hierarchical Structures

Figure 7-7: : Hierarchical path names in a model

From within an analog block, it is possible to use hierarchical name referencing to access
signals on an external branch, but not external variables or parameters. When accessing
external branches, a branch signal (its potential or flow) can be monitored (probed), or
with source branches, contributions can be made to the output signal. However,
contributing to an external switch branch is considered illegal.

It is illegal to indirectly assign to an external branch or contribute to an external branch
that has indirect branch assignment.

7.5 Scope rules

The following two elements define a new scope in Verilog-A HDL:

modules
named blocks

An identifier can be used to declare only one item within a scope. This rule means it is
illegal to declare two or more variables that have the same name, or to give an instance
the same name as the name of the node connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a named block,
it must be declared either locally within the named block, or within a module, or named
block that is higher in the same branch of the name tree that contains the named block.
If it is declared locally, then the local item must be used; if not, the search continue
upward until an item by that name is found or until a module boundary is encountered.
The search can cross named block boundaries, but not module boundaries.

Because of the upward searching, path names that are not strictly on a downward path
can be used.

samplehold in, cntrl, out, sample, store, vthresh, cap
op1 op1.inp, op1.inm, op1.out, op1.gain
op2 op2.inp, op2.inm, op2.out, op2.gain

Version 1.0 Verilog-A Language Reference Manual 7-16

Scope rules Hierarchical Structures

Version 1.0 Verilog-A Language Reference Manual A-1

Scheduling Semantics

Annex A

Scheduling Semantics

Analog Simulation Cycle

Simulation of a network, or system, starts with an analysis of each node to develop
equations that define the complete set of values and flows in a network. Through
transient analysis, the value and flow equations are solved incrementally with respect to
time. At each time increment, equations for each signal are iteratively solved until they
converge on a final solution.

Nodal Analysis

To describe a network, simulators combine constitutive relationships with Kirchhoff’s
laws innodal analysisto form a system of differential-algebraic equations of the form

These equations are a restatement of Kirchhoff’s Flow Law.

v is a vector containing all node values

t is time

q and i are the dynamic and static portions of the flow

f() is a vector containing the total flow out of each node

v0 is the vector of initial conditions

This equation was formulated by treating all nodes as being conservative (even signal
flow nodes). In this way, signal-flow and conservative terminals can be connected
naturally. However, this results in unnecessary KFL equations for those nodes with only
signal-flow terminals attached. This situation is easily recognized and those unnecessary
equations are eliminated along with the associated flow unknowns, which must be by
definition zero.

Transient Analysis

The equation describing the network is differential and nonlinear, which makes it
impossible to solve directly. There are a number of different approaches to solving this

f v t,() dq v t,()
dt

-------------------- i v t,()+ 0= =

v 0() v0=

Version 1.0 Verilog-A Language Reference Manual A-2

Scheduling Semantics

problem numerically. However, all approaches discretize time and solve the nonlinear
equations iteratively.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite
difference approximation. The simulation time interval is discretized and solved at
individual time points along the interval. The simulator controls the interval between the
time points to ensure the accuracy of the finite difference approximation. At each time
point, a system of nonlinear algebraic equations is solved iteratively. Most circuit
simulators use the NR method to solve this system.

Version 1.0 Verilog-A Language Reference Manual A-3

Scheduling Semantics

Simulation Flowchart (Transient Analysis)

Convergence

In Verilog-A, the behavioral description is evaluated iteratively until the NR method
converges. On the first iteration, the signal values used in Verilog-A expressions are
approximate and do not satisfy Kirchhoff’s laws.

In fact, the initial values might not be reasonable, so you must write models that do
something reasonable even when given unreasonable signal values.

No

Initialization
t <- 0

v(0) <- v0

Update time
t <- t + ∆t

Update values
v <- v + ∆v

Evaluate equations
f(v,t) = residue

Converged?
residue < e

∆v < ∆

Yes

No
time step?
Accept the

$Display

Start Analysis

Done? (T = t)

Yes

No

Yes
End

Version 1.0 Verilog-A Language Reference Manual A-4

Scheduling Semantics

For example, if you compute the log or square root of a signal value, some signal values
cause the arguments to these functions to become negative, even though a real-world
system never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues
until two convergence criteria are satisfied. The first criterion is that the proposed
solution on this iteration,v(j)(t), must be close to the proposed solution on the previous
iteration,v(j-1)(t), and

| vn
(j) - vn

(j-1) | < reltol (max(| vn
(j)| , |vn

(j-1)|)) + abstol

wherereltol is the relative tolerance andabstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many
absolute tolerances, and which one is used depends on the quantity the signal represents
(volts, amps, and so on). The absolute tolerance is important whenvn is converging to
zero. Withoutabstol, the iteration never converges.

The second criterion ensures that Kirchhoff's flow law is satisfied:

wherefn
i(v(j)) is the flow exiting noden from branchi.

Both of these criteria specify the absolute tolerance to ensure that convergence is not
precluded whenvn or fn(v) go to zero. While you can set the relative tolerance once in an
options statement to work effectively on any node in the circuit, the absolute tolerance
must be scaled appropriately for its associated signal. The absolute tolerance should be
the largest signal value that is considered negligible on all the signals with which it is
associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value
for signals of a particular quantity. For example, in a typical integrated circuit, the largest
potential is about 5 volts, so the default absolute tolerance for voltage is 1µV. The largest
current is about 1mA, so the default absolute tolerance for current is 1pA.

fn v j()()
n
∑ reltol max fin v j()()()() abstol+<

Version 1.0 Verilog-A Language Reference Manual B-1

Open Issues

Annex B

Open Issues

This appendix contains the list of all open issues known to the working group at this time:

■ Array of parameters

■ Array initialization

■ Connect statement and matching different discipline connections

■ Port branches

■ Reg data type

■ Initial_step, Final_step and gloabl simulator events

■ Replacing behavioral models with SPICE models (SPICE compatibility)

Version 1.0 Verilog-A Language Reference Manual B-2

Open Issues

Version 1.0 Verilog-A Language Reference Manual C-1

Syntax

Annex C

Syntax

This appendix contains the formal syntax definition of Verilog-A HDL. The conventions
used are described in Section 1, Overview.

C.1 Source text

source_text ::=
{description}

description ::=
module_declaration

| discipline_declaration
| nature_declaration

module_declaration ::=
module module _identifier [list_of_ports] ;
[module_items]
endmodule

list_of_ports ::=
(port { , port })

port ::=
[port_expression]

| . port _identifier ([port_expression])
port_expression ::=

port _identifier
| port _identifier [constant_expression]
| port _identifier [msb_constant_expression :

lsb _constant_expression]
module_items ::=

{ module_item }
| analog_block

module_item ::=
module_item_declaration

| parameter_override
| module_instantiation
| analog_block

module_item_declaration ::=
parameter_declaration

| input_declaration
| output_declaration
| inout_declaration
| integer_declaration
| real_declaration
| node_declaration
| branch_declaration

Version 1.0 Verilog-A Language Reference Manual C-2

Syntax

parameter_override ::=
defparam list_of_param_assignments ;

C.2 Natures

nature_declaration ::=
nature nature_name
[nature_descriptions]
endnature

nature_name ::=
nature _identifier

| nature _identifier : parent _identifier
parent_identifier ::=

nature _identifier
| discipline _identifier .flow
| discipline _identifier .potential

nature_descriptions ::=
nature_description

| nature_description nature_descriptions
nature_description ::=

attribute = constant_expression ;
attribute ::=

abstol
| access
| ddt_nature
| idt_nature
| units
| identifier

C.3 Disciplines

discipline_declaration ::=
discipline discipline _identifier
[discipline_descriptions]
enddiscipline

discipline_descriptions ::=
discipline_description

| discipline_description discipline_descriptions
discipline_description ::=

nature_binding
| attr_description

nature_binding ::=
pot_or_flow nature _identifier ;

attr_description ::=
pot_or_flow . attribute _identifier = constant_expression ;

pot_or_flow ::=
potential

| flow

Version 1.0 Verilog-A Language Reference Manual C-3

Syntax

C.4 Declarations

parameter_declaration ::=
parameter [opt_type] list_of_param_assignments ;

opt_type ::=
real

| integer
list_of_param_assignments ::=

declarator_init
| list_of_param_assignments , declarator_init

declarator_init ::=
parameter _identifier = constant_expression [{ opt_range }]

opt_range ::=
from range_specifier

| exclude range_specifier
| exclude constant_expression

range_specifier ::=
start_paren expression1 : expression2 end_paren

start_paren ::=
[

| (
end_paren ::=

]
|)

expression1 ::=
constant_expression

| -inf
expression2 ::=

constant_expression
| inf

input_declaration ::=
input [range] list_of_port_identifiers ;

output_declaration ::=
output [range] list_of_port_identifiers ;

inout_declaration ::=
inout [range] list_of_port_identifiers ;

list_of_port_identifiers ::=
port _identifier { , port _identifier }

integer_declaration ::=
integer list_of_identifiers ;

real_declaration ::=
real list_of_identifiers ;

list_of_identifiers ::=
var_name { , var_name }

var_name ::=
variable _identifier

| array _identifier range

node_declaration ::=
discipline _identifier [range] list_of_nodes ;

Version 1.0 Verilog-A Language Reference Manual C-4

Syntax

list_of_nodes ::=
node _identifier

| node _identifier , list_of_nodes

branch_declaration ::=
branch list_of_branches ;

list_of_branches ::=
list_of_parallel_branches

| list_of_parallel_branches , list_of_branches
list_of_parallel_branches ::=

terminals list_of_branch_identifiers
terminals ::=

(node _identifier)
| (node _identifier , node _identifier)

list_of_branch_identifiers ::=
branch _identifier

| branch _identifier , list_of_branch_identifiers

block_item_declaration ::=
parameter_declaration

| integer_declaration
| real_declaration

C.5 Module instantiation

module_instantiation ::=
module _identifier [parameter_value_assignment] instance_list

instance_list ::=
module_instance { , module_instance } ;

module_instance ::=
name_of_instance ([list_of_module_connections])

name_of_instance ::=
module_instance _identifier [range]

list_of_module_connections ::=
ordered_port_connection { , ordered_port_connection }

| named_port_connection { , named_port_connection }
ordered_port_connection ::=

[expression]
named_port_connection ::=

. port _identifier ([expression])
parameter_value_assignment ::=

(ordered_param_override_list)
| # (named_param_override_list)

ordered_param_override_list ::=
constant_expression { , constant_expression }

named_param_override_list ::=
named_param_override { , named_param_override }

named_param_override ::=
. parameter_identifier (constant_expression)

Version 1.0 Verilog-A Language Reference Manual C-5

Syntax

C.6 Behavioral statements

analog_block ::=
analog statement

statement ::=
null_statement

| block_statement
| branch_contribution
| indirect_branch_assignment
| procedural_assignment
| conditional_statement
| loop_statement
| case_statement
| generate_statement
| event_controlled_statement
| discontinuity_function
| bound_step_function
| last_crossing_function
| system_task_enable

null_statement ::=
;

block_statement ::=
begin [: block _identifier { block_item_declaration }]

{ statement }
end

branch_contribution ::=
bvalue <+ expression ;

bvalue ::=
access_identifier (analog_signal_list)

analog_signal_list ::=
branch_ identifier

| node_or_port_ identifier
| node_or_port _identifier , node_or_port _identifier

indirect_branch_assignment ::=
target : equation ;

target ::=
bvalue

equation ::=
nexpr == expression

nexpr ::=
bvalue

| ddt (bvalue)
| idt (bvalue)

procedural_assignment ::=
lexpr = expression ;

lexpr ::=
integer_ identifier

Version 1.0 Verilog-A Language Reference Manual C-6

Syntax

| real_ identifier
| array_element

array_element ::=
integer_ identifier [constant_expression]

| real_ identifier [constant_expression]

conditional_statement ::=
if (expression) statement
[else statement]

case_statement ::=
case (expression)
 case_item {case_item}
endcase

case_item ::=
expression { , expression } : statement

| default [:] statement
loop_statement ::=

forever statement
| repeat (expression) statement
| while (expression) statement
| for (procedural_assignment ; expression ;

procedural_assignment) statement

generate_statement ::=
generate index _identifier (start_expr , end_expr [, incr_expr])
statement

start_expr ::=
constant_expression

end_expr ::=
constant_expression

incr_expr ::=
constant_expression

event_controlled_statement ::=
@ (event_expression) statement

event_expression ::=
simple_event [or event_expression]

simple_event ::=
global_event

| event_function
| identifier

global_event ::=
initial_step [(analysis_list)]

| final_step [(analysis_list)]
analysis_list ::=

analysis_name { , analysis_name }
analysis_name ::=

" analysis_ identifier "

Version 1.0 Verilog-A Language Reference Manual C-7

Syntax

event_function ::=
cross_function

| timer_function

cross_function ::=
cross (expression [, opt_args])

opt_args ::=
direction [, time_tol [, expression_tol]]

direction ::=
+1 | -1

time_tol ::=
expression

expression_tol ::=
expression

timer_function ::=
timer (start_time [, period])

start_time ::=
expression

period ::=
expression

discontinuity_function ::=
discontinuity (constant_expression)

bound_step_function ::=
bound_step (max_step)

max_step ::=
constant_expression

last_crossing_function ::=
last_crossing (expression [, direction])

system_task_enable ::= system_task_name [(expression
{ , expression })] ;

system_task_name ::= $identifier
Note: The $ may not be followed by a space.

C.7 Expressions

range ::=
[constant_expression : constant_expression]

constant_expression ::=
constant_primary

| string
| unary_operator constant_primary
| constant_expression binary_operator constant_expression
| constant_expression ? constant_expression : constant_expression

Version 1.0 Verilog-A Language Reference Manual C-8

Syntax

constant_primary ::=
number

| parameter _identifier
expression ::=

primary
| unary_operator primary
| expression binary_operator expression
| expression ? expression : expression
| analog_function (arg_list)
| access_function (arg_list)
| built-in_function (arg_list)
| system_function (arg_list)

arg_list ::=
expression { , expression }

access_function ::=
bvalue

unary_operator ::=
+ | - | ! | ~

binary_operator ::=
+ | - | * | / | % | == | != | && | ||

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | <<
primary ::=

number
| identifier
| identifier [expression]
| string
| nexpr
| (expression)

number ::=
decimal_number

| real_number
decimal_number ::=

[sign] unsigned_num
real_number ::=

[sign] unsigned_num . unsigned_num
| [sign] unsigned_num [. unsigned_num] e [sign] unsigned_num
| [sign] unsigned_num [. unsigned_num] E [sign] unsigned_num
| [sign] unsigned_num [. unsigned_num] unit_letter

sign ::=
+

| -
unsigned_num ::=

decimal_digit { _ | decimal_digit }
decimal_digit ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
unit_letter ::=

T | G | M | K | m | u | n | p | f | a
analog_function ::=

ddt | idt | delay | transition | slew
| laplace_zd | laplace_zp | laplace_np | laplace_nd
| zi_zp | zi_zd | zi_np | zi_nd | analysis | ac_stim
| white_noise | flicker_noise | noise_table

Version 1.0 Verilog-A Language Reference Manual C-9

Syntax

built_in_function ::=
ln | log | exp | sqrt | min | max | abs | pow

| sin | cos | tan | asin | acos | atan | atan2
| sinh | cosh | tanh | asinh | acosh | atanh | hypot

system_function ::=
$limexp | $realtime | $temperature | $vt

C.8 General

comment ::=
short_comment

| long_comment
short_comment ::=

// comment_text \n
long_comment ::=

/* comment_text */
comment_text ::=

{ Any_ASCII_character }
string ::=

" { Any_ASCII_character_except_newline } "
identifier ::=

IDENTIFIER [{ . IDENTIFIER }]
NOTE: The period in identifier may not be preceded or followed by a
space.

IDENTIFIER ::=
simple_identifier

| escaped_identifier
simple_identifier ::=

[a-zA-Z]{a-zA-Z_$0-9}
escaped_identifier ::=

\ { Any_ASCII_character_except_white_space } white_space
white_space ::=

space
| tab
| newline

Version 1.0 Verilog-A Language Reference Manual C-10

Syntax

Version 1.0 Verilog-A Language Reference Manual D-1

Keywords

Annex D1

Keywords

This annex contains the list of all keywords used in Verilog-A HDL
abs
abstol
access
acos
acosh
ac_stim
always
analog
analysis
and
asin
asinh
assign
atan
atan2
atanh
begin
bound_step
branch
buf
bufif0
bufif1
case
casex
casez
cmos
cos
cosh
cross
ddt
ddt_nature
deassign
default
defparam
delay
disable
discipline
discontinuity
edge
else
end
enddiscipline

endcase
endmodule
endfunction
endnature
endprimitive
endspecify
endtable
endtask
event
exclude
exp
final_step
flicker_noise
flow
for
force
forever
fork
from
function
generate
ground
highz0
highz1
hypot
idt
idt_nature
if
ifnone
inf
initial
initial_step
inout
input
integer
join
laplace_nd
laplace_np
laplace_zd
laplace_zp
large
last_crossing

ln
log
macromodule
max
medium
min
module
nand
nature
negedge
nmos
noise_table
nor
not
notif0
notif1
or
output
parameter
pmos
posedge
potential
pow
primitive
pull0
pull1
pullup
pulldown
rcmos
real
realtime
reg
release
repeat
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
sin
sinh

slew
small
specify
specparam
sqrt
strong0
strong1
supply0
supply1
table
tan
tanh
task
temperature
time
timer
tran
tranif0
tranif1
transition
tri
tri0
tri1
triand
trior
trireg
units
vectored
vt
wait
wand
weak0
weak1
while
white_noise
wire
wor
xnor
xor
zi_nd
zi_np
zi_zd
zi_zp

Version 1.0 Verilog-A Language Reference Manual D-2

Keywords

Version 1.0 Verilog-A Language Reference Manual E-1

System Tasks and Functions

Annex E

System Tasks and Functions

This annex describes system tasks and functions available in Verilog-A HDL.

E.1 $random function

Syntax:

$random [(seed)] ;

The system function$random provides a mechanism for generating random numbers.
The function returns a new 32-bit random number each time it is called. The random
number is a signed integer; it can be positive or negative.

Theseed parameter controls the numbers that$random returns. Theseed parameter
must be either a register, an integer, or a time variable. The seed value should be assigned
to this variable prior to calling$random.

Examples:

1. Where b > 0 the expression($random % b) gives a number in the following range:
[(-b+1): (b-1)]. The following code fragment shows an example of random
number generation between -59 and 59:

integer rand;
rand = $random % 60;

2. The following example shows how adding the concatenation operator to the preceding
example givesrand a positive value from 0 to 59.

integer rand;
rand = { $random} % 60;

Version 1.0 Verilog-A Language Reference Manual E-2

System Tasks and Functions

E.2 $dist_ functions

Syntax:

Figure E-1: : Syntax for the probabilistic distribution functions

All parameters to the system functions are integer values. For the exponential, poisson,
chi-square, t, and erlang functions, the parameters mean, degree of freedom, and k_stage
must be greater than0.

Each of these functions returns a pseudo-random number whose characteristics are
described by the function name. That is,$dist_uniform returns random numbers
uniformly distributed in the interval specified by its parameters.

For each system function, the seed parameter is an in-out parameter; that is, a value is
passed to the function and a different value is returned. The system functions will always
return the same value given the same seed. This facilitates debugging by making the
operation of the system repeatable. The argument for the seed parameter should be an
integer variable that is initialized by the user and only updated by the system function.
This will ensure that the desired distribution is achieved.

All functions return a real value.

In the$dist_uniform function, the start and end parameters are integer inputs which
bound the values returned. The start value should be smaller than the end value.

The mean parameter, used by$dist_normal, $dist_exponential, $dist_poisson, and
$dist_erlang, is an integer input which causes the average value returned by the function
to approach the value specified.

The standard deviation parameter used with the$dist_normal function is an integer
input which helps determine the shape of the density function. Larger numbers for
standard deviation will spread the returned values over a wider range. With a mean of 0
and standard deviation of 1,$dist_normal generates gaussian distribution.

The degree of freedom parameter used with the$dist_chi_square and$dist_t functions
is an integer input which helps determine the shape of the density function. Larger
numbers will spread the returned values over a wider range.

$dist_uniform (seed, start, end) ;
$dist_normal (seed, mean, standard_deviation) ;
$dist_exponential (seed, mean) ;
$dist_poisson (seed, mean) ;
$dist_chi_square (seed, degree_of_freedom) ;
$dist_t (seed, degree_of_freedom) ;
$dist_erlang (seed, k_stage, mean) ;

Version 1.0 Verilog-A Language Reference Manual E-3

System Tasks and Functions

E.3 Simulation control system tasks

There are two simulation control system tasks,$finish and$stop.

E.3.1 $finish

Syntax:

$finish [(n)] ;

The$finish system task simply makes the simulator exit and pass control back to the host
operating system. If an expression is supplied to this task, then its value determines the
diagnostic messages that are printed before the prompt is issued. If no argument is
supplied, then a value of 1 is taken as the default.

E.3.2 $stop

Syntax:

$stop [(n)] ;

The$stop system task causes simulation to be suspended. This task takes an optional
expression argument (0, 1, or 2) that determines what type of diagnostic message is
printed. The amount of diagnostic messages output increases with the value of the
optional argument passed to$stop.

E.4 File operation tasks

E.4.1 $fopen

Syntax:

integer multi_channel_descriptor = $fopen (" file_name ") ;

The function$fopen opens the file specified as an argument and returns a 32-bit
unsigned multichannel descriptor that is uniquely associated with the file. It returns 0 if
the file could not be opened for writing.

The multichannel descriptor should be thought of as a set of 32 flags, where each flag
represents a single output channel. The least significant bit (bit 0) of a multichannel

Parameter Value Diagnostic Message

0 prints nothing

1 prints simulation time and location

2 prints simulation time, location, and statistics about the memory
and CPU time used in simulation

Version 1.0 Verilog-A Language Reference Manual E-4

System Tasks and Functions

descriptor always refers to the standard output. The standard output is also called channel
0. The other bits refer to channels that have been opened by the$fopen system function.

The first call to$fopen opens channel 1 and returns a multichannel descriptor value of
2—that is, bit 1 of the descriptor is set. A second call to$fopen opens channel 2 and
returns a value of 4—that is, only bit 2 of the descriptor is set. Subsequent calls to
$fopen open channels 3, 4, 5, and so on and return values of 8, 16, 32, and so on, up to
a maximum of 32 open channels. Thus, a channel number corresponds to an individual
bit in a multichannel descriptor.

E.4.2 $fclose

Syntax:

file_close_task ::=
$fclose (multi_channel_descriptor) ;

The$fclose system task closes the channels specified in the multichannel descriptor,
and does not allow any further output to the closed channels. The$fopen task will reuse
channels that have been closed.

E.5 Displaying results

The system task$strobe provides the ability to display simulation data when the
simulator has converged on a solution for all nodes.

The$strobe taskdisplays its arguments in the same order they appear in the argument
list. Each argument can be a quoted string, an expression that returns a value, or a null
argument.

The contents of string arguments are output literally except when certain escape
sequences are inserted to display special characters or specify the display format for a
subsequent expression.

Escape sequences are inserted into a string in three ways:

— The special character \ indicates that the character to follow is a literal or non-
printable character (see Table E-1).

— The special character% indicates that the next character should be interpreted as
a format specification that establishes the display format for a subsequent
expression argument (Table E-2). For each% character that appears in a string, a
corresponding expression argument must be supplied after the string.

— The special character string%% indicates the display of the percent sign charac-
ter% (see Table E-1).

Any null argument produces a single space character in the display. (A null argument is
characterized by two adjacent commas in the argument list.)

The$strobe task, when invoked without arguments, simply prints a newline character.

Version 1.0 Verilog-A Language Reference Manual E-5

System Tasks and Functions

E.5.1 Escape sequences for special characters

The following escape sequences, when included in a string argument, cause special
characters to be displayed:

E.5.2 Format specifications

Table E-2 shows the escape sequences used for format specifications. Each escape
sequence, when included in a string argument, specifies the display format for a
subsequent expression. For each% character (except%m) that appears in a string, a
corresponding expression must follow the string in the argument list. The value of the
expression replaces the format specification when the string is displayed.

Any expression argument that has no corresponding format specification is displayed
using the default decimal format in$strobe.

The format specifications in Table E-3 are used with real numbers and have the full
formatting capabilities available in the C language. For example, the format
specification%10.3g specifies a minimum field width of 10 with 3 fractional digits.

Table E-1: Escape sequences for printing special characters

\n is the newline character

\t is the tab character

\\ is the \ character

\" is the " character

\ddd is a character specified by 1 to 3 octal digits

%% is the % character

Table E-2: Escape sequences for format specifications

%h or %H display in hexadecimal format

%d or %D display in decimal format

%o or %O display in octal format

%b or %B display in binary format

%c or %C display in ASCII character format

%m or %M display hierarchical name

%s or %S display as a string

Version 1.0 Verilog-A Language Reference Manual E-6

System Tasks and Functions

E.5.3 Hierarchical name format

The%m format specifier does not accept an argument. Instead, it causes the display task
to print the hierarchical name of the module, task, function, or named block that invokes
the system task containing the format specifier. This is useful when there are many
instances of the module that calls the system task. One obvious application is timing
check messages in a flip-flop or latch module; the%m format specifier will pinpoint the
module instance responsible for generating the timing check message.

E.5.4 String format

The%s format specifier is used to print ASCII codes as characters. For each%s
specification that appears in a string, a corresponding parameter must follow the string
in the argument list. The associated argument is interpreted as a sequence of 8-bit
hexadecimal ASCII codes, with each 8 bits representing a single character. If the
argument is a variable, its value should be right-justified so that the right-most bit of the
value is the least-significant bit of the last character in the string. No termination
character or value is required at the end of a string, and leading zeros are never printed.

Table E-3: Format specifications for real numbers

%e or %E display ‘real’ in an exponential format

%f or %F display ‘real’ in a decimal format

%g or %G display ‘real’ in exponential or decimal format,
whichever format results in the shorter printed output

Version 1.0 Verilog-A Language Reference Manual F-1

Compiler Directives

Annex F

Compiler Directives

All Verilog-A HDL compiler directives are preceded by the (`) character. This character
is called accent grave. It is different from the character (’), which is the single quote
character. The scope of compiler directives extends from the point where it is processed,
across all files processed, to the point where another compiler directive supersedes it or
the processing completes.

This annex describes the following compiler directives:

`default_nodetype
`define
`else
`endif
`ifdef
`include
`resetall
`undef

F.1 `default_nodetype

The directivè default_nodetype controls the node type created for implicit node
declarations (see section 3.3.4). It can be used only outside of module definitions. It
affects all modules that follow the directive, even across source file boundaries. Multiple
`default_nodetype directives are allowed. The latest occurrence of this directive in the
source controls the type of nodes that will be implicitly declared. The following is the
syntax of the directive:

Figure F-1: Syntax for default nodetype compiler directive

When nò default_nodetype directive is present, implicit nodes are of typewire.

default_nodetype_compiler_directive ::=
`default_nodetype discipline _identifier

| `default_nodetype wire

Version 1.0 Verilog-A Language Reference Manual F-2

Compiler Directives

F.2 `define and `undef

A text macro substitution facility has been provided so that meaningful names can be
used to represent commonly used pieces of text. For example, in the situation where a
constant number is repetitively used throughout a description, a text macro would be
useful in that only one place in the source description would need to be altered if the
value of the constant needed to be changed.

F.2.1 `define

The directivè define creates a macro for text substitution. This directive can be used
both inside and outside module definitions. After a text macro is defined, it can be used
in the source description by using the (`) character, followed by the macro name. The
compiler substitutes the text of the macro for the string`macro_name . All compiler
directives are considered pre-defined macro names; it is illegal to re-define a compiler
directive as a macro name.

A text macro can be defined with arguments. This allows the macro to be customized for
each use individually.

The syntax for text macro definitions is as follows:

Figure F-2: : Syntax for text macro definition

The macro text can be any arbitrary text specified on the same line as the text macro
name. If more than one line is necessary to specify the text, the newline must be preceded
by a backslash (\). The first newline not preceded by a backslash will end the macro text.
The newline preceded by a backslash is replaced in the expanded macro with a newline
(but without the preceding backslash character).

When formal arguments are used to define a text macro, the scope of the formal
arguments extend up to the end of the macro text. A formal argument can be used in the
macro text in the same manner as an identifier.

If a one-line comment (that is, a comment specified with the characters //) is included in
the text, then the comment does not become part of the text substituted. The macro text

text_macro_definition ::=
`define text_macro_name macro_text

text_macro_name ::=
text_macro_ identifier [(list_of_formal_arguments)]

list_of_formal_arguments ::=
formal_argument_ identifier { , formal_argument_ identifier }

Version 1.0 Verilog-A Language Reference Manual F-3

Compiler Directives

can be blank, in which case the text macro is defined to be empty and no text is
substituted when the macro is used.

The syntax for using a text macro is as follows:

Figure F-3: : Syntax for text macro usage

For an argument-less macro, the text is substituted “as is” for every occurrence of
`text_macro. However, a text macro with one or more arguments must be expanded by
substituting each formal argument with the expression used as the actual argument in the
macro usage.

Once a text macro name has been defined, it can be used anywhere in a source
description; that is, there are no scope restrictions. Text macros may be defined and used
interactively.

The text specified for macro text can not be split across the following lexical tokens:

— comments
— numbers
— strings
— identifiers
— keywords
— operators

Examples:

`define M_PI 3.14159265358979323846

`define size 8
electrical [1:` size] vout;

//define an adc with variable delay
`define var_adc(dly) adc #(dly)

`var_adc(2) g121 (q21, n10, n11);
`var_adc(5) g122 (q22, n10, n11);

The following is illegal syntax because it is split across a string:

`define first_half "start of string
$display(`first_half end of string");

text_macro_usage ::=
` text_macro_ identifier [(list_of_actual_arguments)]

list_of_actual_arguments ::=
actual_argument { , actual_argument }

actual_argument ::=
expression

Version 1.0 Verilog-A Language Reference Manual F-4

Compiler Directives

Note: Text macro names can not be the same as compiler directive keywords.

Note: Text macro names can re-use names being used as ordinary identifiers. For
example,signal_name and`signal_name are different.

Note: Redefinition of text macros is allowed; the latest definition of a particular text
macro read by the compiler prevails when the macro name is encountered in the
source text.

F.2.2 `undef

The directivèundef undefines a previously defined text macro. An attempt to undefine
a text macro that was not previously defined using a`define compiler directive can result
in a warning. The syntax for`undef compiler directive is as follows:

Figure F-4: : Syntax for undef compiler directive

An undefined text macro has no value.

F.3 `ifdef, `else, `endif

These conditional compilation compiler directives are used to optionally include lines of
a Verilog-A HDL source description during compilation. The`ifdef compiler directive
checks for the definition of a variable name. If the variable name is defined then the lines
following the`ifdef directive are included. If the variable name is not defined and an
`else directive exists then this source is compiled.

These directives may appear anywhere in the source description.

Situations where thèifdef, `else, and`endif compiler directives may be useful include:

— selecting different representations of a module such as behavioral, structural, or
mixed level

— choosing different timing or structural information
— selecting different stimulus for a given simulation run

The`ifdef, `else, and`endif compiler directives have the following syntax:

undefine_compiler_directive ::=
`undef text_macro_name

Version 1.0 Verilog-A Language Reference Manual F-5

Compiler Directives

Figure F-5: : Syntax for conditional compilation directives

The text macro name is a Verilog-A HDL identifier. The first group of lines and the
second group of lines are parts of a Verilog-A HDL source description. The `else
compiler directive and the second group of lines are optional.

The`ifdef, `else, and`endif compiler directives work in the following manner:

— When an`ifdef is encountered, the text macro name is tested to see if it is
defined as a text macro name using`define within the Verilog-A HDL source
description.

— If the text macro name is defined, the first group_of_lines is compiled as part of
the description. If there is an`else compiler directive, the second group of lines
is ignored.

— If the text macro name has not been defined, the first group of lines is ignored. If
there is aǹelse compiler directive the second group of lines is compiled.

Note: Any group of lines that the compiler ignores still must follow the Verilog-A HDL
lexical conventions for white space, comments, numbers, strings, identifiers,
keywords, and operators.

Note: These compiler directives may be nested.

F.4 `include

The file inclusion (̀include) compiler directive is used to insert the entire contents of a
source file in another file during compilation. The result is as though the contents of the
included source file appear in place of the`include compiler directive. Thèinclude
compiler directive can be used to include global or commonly used definitions and tasks
without encapsulating repeated code within module boundaries.

Advantages of using thèinclude compiler directive include the following:

— providing an integral part of configuration management
— improving the organization of Verilog-A HDL source descriptions
— facilitating the maintenance of Verilog-A HDL source descriptions

The syntax for thèinclude compiler directive is as follows:

conditional_compilation_directive ::=
`ifdef text_macro_name

first_group_of_lines
[`else

second_group_of_lines
`endif]

Version 1.0 Verilog-A Language Reference Manual F-6

Compiler Directives

Figure F-6: : Syntax for include compiler directive

The compiler directivèinclude can be specified anywhere within the Verilog-A HDL
description. Thefilename is the name of the file to be included in the source file. The
filename can be a full or relative path name.

Only white space or a comment may appear on the same line as the`include compiler
directive.

A file included in the source using`include compiler directive may contain other
`include compiler directives. The number of nesting levels for included files are finite.

Examples:

Examples of legal comments for the`include compiler directive are as follows:

`include "parts/count.v"

`include "fileA"
`include "fileB" // including fileB

Note: Implementations may limit the maximum number of levels to which include files
can be nested, but the limit shall be at least 15.

F.5 `resetall

When`resetall compiler directive is encountered during compilation, all compiler
directives are set to the default values. This is useful for ensuring that only those
directives that are desired in compiling a particular source file are active.

The recommended usage is to place`resetall at the beginning of each source text file,
followed immediately by the directives desired in the file.

include_compiler_directive ::=
`include " filename "

Version 1.0 Verilog-A Language Reference Manual G-1

Standard Definitions

Annex G

Standard Definitions

This annex contains the standard definition package for Verilog-A HDL

`ifdef DISCIPLINES_H
`else
`define DISCIPLINES_H 1

//
// Natures and Disciplines
//

/*
* Default absolute tolerances may be overriden by setting the
* appropriate _ABSTOL prior to including this file
*/

// Electrical

// Current in amperes
nature Current

units = "A";
access = I;
idt_nature = Charge;

`ifdef CURRENT_ABSTOL
abstol = `CURRENT_ABSTOL;

`else
abstol = 1e-12;

`endif
endnature

// Charge in coulombs
nature Charge

units = "coul";
access = Q;
ddt_nature = Current;

`ifdef CHARGE_ABSTOL
abstol = `CHARGE_ABSTOL;

`else
abstol = 1e-14;

`endif
endnature

Version 1.0 Verilog-A Language Reference Manual G-2

Standard Definitions

// Potential in volts
nature Voltage

units = "V";
access = V;
idt_nature = Flux;

`ifdef VOLTAGE_ABSTOL
abstol = `VOLTAGE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Flux in Webers
nature Flux

units = "Wb";
access = Phi;
ddt_nature = Voltage;

`ifdef FLUX_ABSTOL
abstol = `FLUX_ABSTOL;

`else
abstol = 1e-9;

`endif
endnature

// Conservative discipline
discipline electrical

potential Voltage;
flow Current;

enddiscipline

// Signal flow disciplines
discipline voltage

potential Voltage;
enddiscipline

discipline current
potential Current;

enddiscipline

// Magnetic
// Magnetomotive force in Ampere-Turns.
nature Magneto_Motive_Force

units = "A*turn";
access = MMF;

`ifdef MAGNETO_MOTIVE_FORCE_ABSTOL
abstol = `MAGNETO_MOTIVE_FORCE_ABSTOL;

`else
abstol = 1e-12;

`endif
endnature

Version 1.0 Verilog-A Language Reference Manual G-3

Standard Definitions

// Conservative discipline
discipline magnetic

potential Magneto_Motive_Force;
flow Flux;

enddiscipline

// Thermal

// Temperature in Celsius
nature Temperature

units = "C";
access = Temp;

`ifdef TEMPERATURE_ABSTOL
abstol = `TEMPERATURE_ABSTOL;

`else
abstol = 1e-4;

`endif
endnature

// Power in Watts
nature Power

units = "W";
access = Pwr;

`ifdef POWER_ABSTOL
abstol = `POWER_ABSTOL;

`else
abstol = 1e-9;

`endif
endnature

// Conservative discipline
discipline thermal

potential Temperature;
flow Power;

enddiscipline

// Kinematic

// Position in meters
nature Position

units = "m";
access = Pos;
ddt_nature = Velocity;

`ifdef POSITION_ABSTOL
abstol = `POSITION_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

Version 1.0 Verilog-A Language Reference Manual G-4

Standard Definitions

// Velocity in meters per second
nature Velocity

units = "m/s";
access = Vel;
ddt_nature = Acceleration;
idt_nature = Position;

`ifdef VELOCITY_ABSTOL
abstol = `VELOCITY_ABSTOL;

`else
abstol = 1e-6;

‘endif
endnature

// Acceleration in meters per second squared
nature Acceleration

units = "m/s^2";
access = Acc;
ddt_nature = Impulse;
idt_nature = Velocity;

`ifdef ACCELERATION_ABSTOL
abstol = `ACCELERATION_ABSTOL;

`else
abstol = 1e-6;

‘endif
endnature

// Impulse in meters per second cubed
nature Impulse

units = "m/s^3";
access = Imp;
idt_nature = Acceleration;

`ifdef IMPULSE_ABSTOL
abstol = `IMPULSE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Force in newtons
nature Force

units = "n";
access = F;

`ifdef FORCE_ABSTOL
abstol = `FORCE_ABSTOL;

`else
abstol = 1e-6;

‘endif
endnature

// Conservative disciplines
discipline kinematic

potential Position;
flow Force;

enddiscipline

Version 1.0 Verilog-A Language Reference Manual G-5

Standard Definitions

discipline kinematic_v
potential Velocity;
flow Force;

enddiscipline

// Rotational

// Angle in radians
nature angle

units = "rads";
access = Theta;
ddt_nature = Angular_Velocity;

`ifdef ANGLE_ABSTOL
abstol = `ANGLE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Angular Velocity in radians per second
nature Angular_Velocity

units = "rads/s";
access = Omega;
ddt_nature = Angular_Acceleration;
idt_nature = Angular_Velocity;

`ifdef ANGULAR_VELOCITY_ABSTOL
abstol = `ANGULAR_VELOCITY_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Angular acceleration in radians per second squared
nature Angular_Acceleration

units = "rads/s^2";
access = Alpha;
ddt_nature = Angular_Velocity;

`ifdef ANGULAR_ACCELERATION_ABSTOL
abstol = `ANGULAR_ACCELERATION_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

// Force in newtons
nature Angular_Force

units = "n/m";
access = Tau;

`ifdef ANGULAR_FORCE_ABSTOL
abstol = `ANGULAR_FORCE_ABSTOL;

`else
abstol = 1e-6;

`endif
endnature

Version 1.0 Verilog-A Language Reference Manual G-6

Standard Definitions

// Conservative disciplines
discipline rotational

potential Angle;
flow Angular_Force;

enddiscipline

discipline rotational_omega
potential Angular_Velocity;
flow Angular_Force;

enddiscipline

‘endif

Version 1.0 Verilog-A Language Reference Manual G-7

Standard Definitions

// Mathematical and physical constants

`ifdef CONSTANTS_H
`else
`define CONSTANTS_H 1

// M_ is a mathmatical constant

`define M_E 2.7182818284590452354
`define M_LOG2E 1.4426950408889634074
`define M_LOG10E 0.43429448190325182765
`define M_LN2 0.69314718055994530942
`define M_LN10 2.30258509299404568402
`define M_PI 3.14159265358979323846
‘define M_TWO_PI 6.28318530717958647652
`define M_PI_2 1.57079632679489661923
`define M_PI_4 0.78539816339744830962
`define M_1_PI 0.31830988618379067154
`define M_2_PI 0.63661977236758134308
`define M_2_SQRTPI 1.12837916709551257390
`define M_SQRT2 1.41421356237309504880
`define M_SQRT1_2 0.70710678118654752440

// P_ is a physical constant

// charge of electron in coulombs
`define P_Q 1.6021918e-19

// speed of light in vacuum in meters/sec
`define P_C 2.997924562e8

// Boltzman's constant in joules/kelvin
`define P_K 1.3806226e-23

// Plank's constant in joules*sec
`define P_H 6.6260755e-34

// permittivity of vacuum in farads/meter
`define P_EPS0 8.85418792394420013968e-12

// permeability of vacuum in henrys/meter
`define P_U0 (4.0e-7 * `M_PI)

// zero celsius in kelvin
`define P_CELSIUS0 273.15

‘endif

Version 1.0 Verilog-A Language Reference Manual G-8

Standard Definitions

Version 1.0 Verilog-A Language Reference Manual H-1

Glossary

Annex H

Glossary

Glossary of Terms

B

behavioral description

A mathematical mapping of inputs to outputs for a module, including intermediate
variables and control flow.

behavioral model

A version of a module with a unique set of parameters designed to model a specific
component.

block

A level within the behavioral description of a module, delimited bybegin andend.

branch

A relationship between two nodes and their attached quantities within the behavioral
description of a module. Each branch has two quantities, a value and a flow, with a
reference direction for each.

C

component

A fundamental unit within a system that encapsulates behavior and/or structure (also
known as an element). Modules and models might represent a single component, or a
subcircuit with many components.

constitutive relationships

The essential relationships (expressions, statements) between the outputs of a module
and its inputs and parameters that define the nature of the module. These relationships
constitute a behavioral description.

Version 1.0 Verilog-A Language Reference Manual H-2

Glossary

control flow

The conditional and iterative statements controlling the behavior of a module. These
statements evaluate arbitrary variables, (counters, flags, and tokens), to control the
operation of different sections of a behavioral description.

child module

A module instantiated inside the behavioral description of another, “parent” module.
You must have a complete definition of the child module somewhere. A child module is
also known as submodule or instantiated module.

D

declaration

A definition of the properties of a variable or a node.

dynamic attributes

The characteristics of an expression whose value is derived from the evaluation of a
derivative (thedot function). Dynamic expressions define time-dependent module
behavior. Some functions cannot operate on dynamic expressions.

E

element

A fundamental unit within the system that encapsulates behavior and/or structure (also
known as ancomponent).

F

flow

One of the two fundamental quantities used to simulate the behavior of a system. In
electrical systems, flow is current.

G

global declarations

Declarations of variables and parameters at the beginning of a behavioral description.

Version 1.0 Verilog-A Language Reference Manual H-3

Glossary

I

instance

Any named occurrence of an element created from a module definition. One module
definition can occur in multiple instances.

instantiation

The process of creating an instance from a module definition or simulator primitive, and
defining the connectivity and parameters of that instance. (Placing the instance in the
circuit or system.)

K

Kirchhoff’s Laws

Physical laws that define the interconnection relationships of nodes, branches, values,
and flows. They specify a conservation of flow in and out of a node and a conservation
of value around a loop of branches.

L

level

One block within a behavioral description, delimited by a pair of matching keywords
such as begin-end, discipline-enddiscipline.

M

model

A named instance with a unique group of parameters specifying the behavior of one
particular version of a module. You can use models to instantiate elements with
parametric specifications different than those in the original module definition.

module

A definition of the interfaces and behavior of a component or a function.

Version 1.0 Verilog-A Language Reference Manual H-4

Glossary

N

NR method

Newton-Raphson method. A generalized method for solving systems of nonlinear
algebraic equations by breaking them into a series of many small linear operations
ideally suited for computer processing.

node

A connection point in the system, with access functions for potential and/or flow through
underlying discipline.

node declaration

The statement in a module definition, identifying the names of the nodes that are
associated with the module ports or are local to the module. A node declaration also
identifies the discipline of the node, which in turn identifies the access functions.

P

parameter

A variable for characterizing the behavior of an instance of a module. Parameters are
defined in the first section of a module, the module interface declarations, and can be
specified each time a module is called in a netlist instance statement.

parameter declaration

The statement in a module definition, which defines the instance parameters of that
module.

pin

An external connection point for a module (also known as aterminal).

potential

One of the two fundamental quantities used to simulate the behavior of a system.

primitive

A basic component that is defined entirely in terms of behavior, without reference to any
other primitives. A primitive is the smallest and simplest possible portion of a simulated
circuit or system.

Version 1.0 Verilog-A Language Reference Manual H-5

Glossary

probe

An artificial branch introduced into a circuit (or system) that does not alter its behavior,
but lets the simulator to read out the potential or flow at that point.

R

reference direction

A convention for determining whether the value of a node, the flow through a branch,
the value across a branch, or the flow in or out of a terminal, is positive or negative.

reference node

The global node (which equals zero value) against which all node values are measured.
The reference node is ground in an electrical system.

run time binding

The conditional introduction and removal of value and flow sources during a simulation.
A value source can replace a flow source and vice versa. Binding a source to a specific
node or branch prevents it from going into an unknown state.

S

scope

The current nesting level of a block statement, which includes all lines of code within
one set of braces in a module definition.

structural definitions

Instantiating modules inside other modules through the use of module definitions and
declarations to create a hierarchical structure in the module’s behavioral description.

T

terminal

An external connection point for a module (also known as apin or ananalog port).

Version 1.0 Verilog-A Language Reference Manual H-6

Glossary

V

Verilog-A

Analog version of Verilog HDL. A language for behavioral description of continuous-
time systems that uses a syntax similar to Verilog HDL standard IEEE 1364.

Version 1.0 Verilog-A Language Reference Manual Index-1

Index

Symbols
!

logical negation operator 4-1, 4-6
!=

logical inequality operator 4-1, 4-5
$dist_ functions E-2
$dist_chi_square E-2
$dist_erlang E-2
$dist_exponential E-2
$dist_normal E-2
$dist_poisson E-2
$dist_t E-2
$dist_uniform E-2
$fclose E-4
$finish E-3
$fopen E-3
$limexp 4-22
$random E-1
$stop E-3
$strobe

escape sequences E-5
format specifications E-5

$transition 4-14
%

in format specifications E-4
modulus operator 4-1

&
bit-wise AND operator 4-1

&&
logical AND operator 4-1, 4-5

*
arithmetic multiplication operator 4-1

,,
in null expressions E-4

/
arithmetic division operator 4-1

<
relational less-than operator 4-1, 4-5

<+
branch contribution operator 5-8

<<
left shift operator 4-2, 4-7

<=
relational less-than-or-equal operator 4-1, 4-5

==
logical equality operator 4-1, 4-5

>

relational greater-than operator 4-1, 4-5
>=

relational greater-than-or-equal operator 4-1, 4-5
>>

right shift operator 4-2, 4-7
?:

conditional operator 4-2
@ operator 6-8
\

for escape sequences in strings E-4
^

bit-wise exclusive OR operator 4-1
^~

bit-wise equivalence operator 4-2
`

in compiler directives F-1
`default_nodetype F-1
`define F-2
`else F-4
`endif F-4
`ifdef F-4
`include F-5
`resetall F-6
`undef F-4
|

bit-wise inclusive OR operator 4-1
||

logical OR operator 4-1, 4-5
~

bit-wise negation operator 4-1
~^

bit-wise equivalence operator 4-2

A
absolute tolerance 4-12, 4-13, 4-17, A-4
abstol 3-7
AC Stimulus 4-23
Acceleration G-4
access 3-7
Access Functions 5-1
A-D converter 4-16
always procedural block 6-1
analog block 5-8
analog bus 3-12
analog operators 4-10

restrictions 4-11
analog procedural block 6-1

Version 1.0 Verilog-A Language Reference Manual Index-2

Index

analysis dependent functions 4-22
analysis function 4-22
angle G-5
Angular_Acceleration G-5
Angular_Force G-5
Angular_Velocity G-5
arithmetic operators 4-1, 4-4

- 4-4
% 4-4
* 4-4
+ 4-4
/ 4-4

arrays
of integers 3-1
of time variables 3-1

associated reference directions 1-3

B
begin-end block statement 6-4
bidirectional port 7-9
binary operators 4-2

precedence 4-2
bit-wise operators 4-6

AND 4-1
and 4-6
equivalence 4-2
exclusive nor 4-6
exclusive OR 4-1
exclusive or 4-6
inclusive OR 4-1
inclusive or 4-6
negation 4-1
unary negation 4-6

block statement
naming of 6-3

bound_step function 6-15
branch contribution operator 5-8
branch relations 5-8, 5-9
Branches 3-15
branches 1-3
built-in primitives 1-3

C
case statement 6-5
Charge G-1
comments 2-1
compatibility rules

empty discipline rule 3-13
flow compatibility rule 3-13
nature compatibility rule 3-13
nature incompatibility rule 3-13
potential compatibility rule 3-13
self rule 3-13
units value rule 3-13

Compiler directives 2-7
concatenation

of names 7-14
conditional compilation F-4
conditional operator 4-2, 4-7
conditional operator ?: 4-2
conditional statement 6-4
Connecting module ports by name 7-11
Connecting module ports by ordered list 7-10
connecting ports

by name 7-11
rules 7-11

conservative branch 3-15
conservative disciplines 3-10
conservative nodes 3-10
constant expression 4-1
constitutive relationships 1-3, A-1
contribution statements 6-2
convergence A-3
Correlated noise 4-25
cross function 6-11
Current G-1
current G-2

D
ddt operator 4-11
ddt_nature 3-7
decimal notation 2-3
default

in case statement 6-5
in if-else-if statements 6-5

Defining a function 4-25
defparam 3-3, 7-5 to 7-6
defparam statement 7-5
delay operator 4-13
diagnostic messages

from $stop and $finish E-3
discipline 3-9
disciplines

conservative 3-10
empty 3-10
signal-flow 3-10

discontinuity 6-13
discrete-time finite difference approximation A-2

E
electrical G-2
else 6-5
else statement 6-4
embedding modules 7-1, 7-3
empty disciplines 3-10
end

sequential block 6-2
endcase 6-5

Version 1.0 Verilog-A Language Reference Manual Index-3

Index

enddiscipline 3-9
endfunction 4-26
endmodule 7-2
equality operators

!= 4-5
== 4-5
precedence 4-5

escape sequences E-4, E-5
escaped identifiers 2-5
event

OR construct 6-9
event or 4-2
event or operator 4-7
events

global 6-9
monitored 6-9

exit simulator E-3
exponentiation 4-8
expression

evaluation order 4-3
expressions 4-9

constant 4-1

F
file inclusion F-5
filters 4-10
final_step 6-10
finite-difference approximation A-2
flicker_noise 4-24
floating-point literals 2-4
flow 1-4
flow probe 5-3
flow source 5-2
Flux G-2
for loop 6-6
Force G-4
forever loop 6-6
format specifications E-5

ASCII character E-5
b or B E-5
binary E-5
c or C E-5
d or D E-5
decimal E-5
h or H E-5
hexadecimal E-5
hierarchical name E-5
m or M E-5
o or O E-5
octal E-5
s or S E-5
string E-5, E-6

function 4-26
functions

call 4-27

definition 4-25
distribution E-2
probability E-2
returning a value 4-27

G
generate statement 6-7
global events 6-9
ground 1-3

H
hierarchical path name 7-13
hierarchy

level 7-13
name referencing 7-13, E-5
scope 7-13
scope rules for naming 7-15
top level names 7-13

hyperbolic functions 4-8

I
ideal opamp 5-9
identifiers 2-5

escaped 2-5
keywords 2-5

idt operator 4-12
idt_nature 3-7
if-else statement 6-4

omitting else from nested if 6-4
If-else-if 6-5
implicit declarations F-1
implicit equations 5-5
implicit nodes 3-13
Impulse G-4
indirect branch assignement 5-10
initial procedural block 6-1
initial_step 6-10
inout port 7-9
input port 7-9
instantiation

of modules 7-1
instantiation of modules 7-3
integer 3-1
integers

division 4-4
interconnection relationships 1-3

J
junction diode 5-6

Version 1.0 Verilog-A Language Reference Manual Index-4

Index

K
keywords 2-5
kinematic G-4
kinematic_v G-5
Kirchhoff’s Flow Law 1-4, A-1, A-4
Kirchhoff’s laws 1-3, A-1
Kirchhoff’s Value Law 1-4

L
Laplace transform filters 4-17
laplace_nd 4-19
laplace_np 4-18
laplace_zd 4-18
laplace_zp 4-17
last_crossing function 6-16
left shift operator 4-2, 4-7
lexical token

comment 2-1
definition of 2-1
number 2-2
operator 2-2
types 2-1
white space 2-1

limited exponential 4-22
logical operators 4-5

! 4-6
&& 4-5
|| 4-5
AND 4-1
equality 4-1
inequality 4-1
negation 4-1
OR 4-1
precedence 4-5

looping statement
for loop 6-6
forever loop 6-6
repeat loop 6-6
while loop 6-6

M
M_1_PI G-7
M_2_PI G-7
M_2_SQRTPI G-7
M_E G-7
M_LN10 G-7
M_LN2 G-7
M_LOG10E G-7
M_LOG2E G-7
M_PI G-7
M_PI_2 G-7
M_PI_4 G-7
M_SQRT1_2 G-7

M_SQRT2 G-7
M_TWO_PI G-7
magnetic G-3
Magneto_Motive_Force G-2
mathematical function 4-8
mathematical functions 4-7
minus sign(-)

arithmetic subtraction operator 4-1
module 7-1

definition 7-1
instance parameter value assignment 7-6
instantiation 7-3
overriding parameter values 7-5 to 7-8
parameter dependencies 7-8
port 7-4
terminal 7-4
top-level 7-2

module parameter
dependencies 7-8
overriding values 7-5 to 7-8

modulus operator 4-1
definition 4-4

multi-channel descriptor E-3
multi-way decisions

case statement 6-5
if-else-if statement 6-5

N
named blocks

and scope 7-15
purpose 6-3

names
of hierarchical paths 7-13

new line character E-5
Newton-Raphson method A-3
nodal analysis A-1
node 3-5

in hierarchical name tree 7-14
nodes 1-4, 3-12
noise 4-24
noise_table 4-24
null

expression E-4
numbers 2-2

O
operators 4-1 to 4-7

- 4-1
! 4-1, 4-6
!= 4-1, 4-5
% 4-1
& 4-1
&& 4-1, 4-5
* 4-1

Version 1.0 Verilog-A Language Reference Manual Index-5

Index

+ 4-1
/ 4-1
< 4-1, 4-5
<< 4-2, 4-7
<= 4-1, 4-5
== 4-1, 4-5
> 4-1, 4-5
>= 4-1, 4-5
>> 4-2, 4-7
?: 4-2
^ 4-1
^~ 4-2
| 4-1
|| 4-1, 4-5
~ 4-1
~^ 4-2
analog 4-10
and real numbers 3-2
arithmetic 4-1, 4-4
binary 2-2, 4-2
bit-wise 4-6
bit-wise AND 4-1
bit-wise equivalence 4-2
bit-wise exclusive OR 4-1
bit-wise inclusive OR 4-1
bit-wise negation 4-1
conditional 2-2, 4-2, 4-7
definition 2-2
event or 4-2
left shift 4-2
left shift operator 4-7
logical 4-5
logical AND 4-1
logical equality 4-1
logical inequality 4-1
logical negation 4-1
logical OR 4-1
modulus 4-1
power 4-8
relational 4-1, 4-4
right shift 4-2
right shift operator 4-7
shift 4-7
time derivative 4-11
time integral 4-12
unary 2-2

output port 7-9
overriding module parameter values 7-5 to 7-8

by name 7-7
defparam 7-5

P
P_C G-7
P_CELSIUS0 G-7
P_EPS0 G-7

P_H G-7
P_K G-7
P_Q G-7
P_U0 G-7
parameter

module type 3-2
parameter assignment by name 7-5
parameter assignment by order 7-5
parentheses

and changing operator precedence 4-3
plus sign(+)

arithmetic addition operator 4-1
port 7-8 to 7-13

connecting by name 7-11
declaration 7-9
definition 7-8
module 7-4
rules for connecting 7-11

port branch 3-15
Port Branches 5-6
Position G-3
potential probe 5-3
potential source 5-2
pow operator 4-8
precedence

binary operators 4-2
equality operators 4-5
logical operators 4-5
relational operators 4-5

primitives Glossary-4
probabilistic distribution functions E-2

$dist_chi_square E-2
$dist_erlang E-2
$dist_exponential E-2
$dist_normal E-2
$dist_poisson E-2
$dist_t E-2
$dist_uniform E-2
gaussian distribution E-2

probe 5-3
Probes 5-3

Q
QAM modulator 4-15
quantities A-4

R
real numbers 3-1 to 3-2

and operators 3-2
conversion to integers 2-4, 3-2
format specifications used with E-5
operators with real number operands 4-2

reference direction 1-3
reference node 1-3

Version 1.0 Verilog-A Language Reference Manual Index-6

Index

relational operators 4-1, 4-4
< 4-5
<= 4-5
> 4-5
>= 4-5
precedence 4-5

relative tolerance A-4
repeat loop 6-6
right shift operator 4-2, 4-7
rotational G-6
rotational_omega G-6

S
s

in string display format E-6
scalar node 3-12
scientific notation 2-3
scope

and hierarchical names 7-14
rules 7-15

seed E-2
shift operators 4-7

<< 4-7
>> 4-7

signal transitions 4-13
signal-flow branch 3-15
signal-flow disciplines 3-10
signal-flow nodes 3-10
sinusoidal voltage source 6-15
slew filter 4-16
slope 4-16
source branch 5-2
Sources 5-2
standard mathematical functions 4-8
standard output E-4
stochastic analysis E-2

probabilistic distribution functions E-2
stop E-3
strings

display format E-5, E-6
switch branch 5-2
system tasks

for interrupting the simulator E-3
System tasks and functions 2-7

T
Temperature G-3
terminals 1-3
text macro substitutions F-2 to F-4

and `define F-2
definition F-2
redefinition F-4
with arguments F-2

thermal G-3

time derivative operator 4-11, A-2
time integral operator 4-12
timer function 6-12
Tolerances 4-11
top-level module 7-2
transient analysis A-1
transition 4-13
transition filter 4-13
transition function 4-14
tree structure

of hierarchical names 7-13
trigonometric functions 4-8
type specification

parameter 3-4

U
unary operators

! 4-6
<< 4-7
>> 4-7

undescore character 2-2
units 3-7
User Defined Attributes 3-9
User defined functions 4-25

V
value 1-3
value range specification

parameter 3-4
vector branch 3-16
vector node 3-12
Velocity G-4
Voltage G-2

W
Watts G-3
while loop 6-6
white space 2-1
white_noise 4-24
wire 3-10

Z
zi_nd 4-21
zi_np 4-21
zi_zd 4-20
zi_zp 4-20
Z-transform filters 4-19

