Dietary Reference Intakes Definitions

Estimated Average Requirement (EAR)

- The EAR is the median daily intake value that is estimated to meet the requirement of half the healthy individuals in a life-stage and gender group. At this level of intake, the other half of the individuals in the specified group would not have their needs met.
- The EAR is based on a specific criterion of adequacy, derived from a careful review of the literature. Reduction of disease risk is considered along with many other health parameters in the selection of that criterion.
- The EAR is used to calculate the RDA. It is also used to assess the adequacy of nutrient intakes, and can be used to plan the intake of groups.

Recommended Dietary Allowance (RDA)

- The RDA is the average daily dietary intake level that is sufficient to meet the nutrient requirement of nearly all (97 to 98 percent) healthy individuals in a particular life-stage and gender group.
- The RDA is the goal for usual intake by an individual.

Adequate Intake (AI)

- If sufficient scientific evidence is not available to establish an EAR on which to base an RDA, an AI is derived instead.
- The AI is the recommended average daily nutrient intake level based on observed or experimentally determined approximations or estimates of nutrient intake by a group (or groups) of apparently healthy people who are assumed to be maintaining an adequate nutritional state.
- The AI is expected to meet or exceed the needs of most individuals in a specific life-stage and gender group.
- When an RDA is not available for a nutrient, the AI can be used as the goal for usual intake by an individual. The AI is not equivalent to an RDA.

Tolerable Upper Intake Level (UL)

- The UL is the highest average daily nutrient intake level likely to pose no risk of adverse health effects to almost all individuals in a given life-stage and gender group.
- The UL is not a recommended level of intake
- As intake increases above the UL, the potential risk of adverse effects increases.

Estimated Energy Requirement (EER)

- An EER is defined as the average dietary energy intake that is predicted to maintain energy balance in healthy, normal weight individuals of a defined age, gender, weight, height, and level of physical activity consistent with good health. In children and pregnant and lactating women, the EER includes the needs associated with growth or secretion of milk at rates consistent with good health.
- Relative body weight (i.e. loss, stable, gain) is the preferred indicator of energy adequacy.

Acceptable Macronutrient Distribution Range (AMDR)

 The AMDR is a range of intake for a particular energy source (protein, fat, or carbohydrate), expressed as a percentage of total energy (kcal), that is associated with reduced risk of chronic disease while providing adequate intakes of essential nutrients.

Dietary Reference Intakes Definitions

 Total Fibre The sum of Dietary Fibre and Functional Fibre. 	
 Dietary Fibre Non-digestible carbohydrates and lignin that are intrinsic and intact in plants. Dietary fibre includes plant non-starch polysaccharides (e.g. cellulose, pectin, gums, hemicellulose, β-glucans, and fibres contained in oat and wheat bran), plant carbohydrates that are not recovered by alcohol precipitation (e.g. inulin, oligosaccharides, and fructans), lignin, and some resistant starch. 	
 Functional Fibre Isolated non-digestible carbohydrates that have been shown to have beneficial physiological effects in humans. Functional fibre includes isolated non-digestible plant (e.g. resistant starch, pectin, and gums), animal (e.g. chitin and chitosan), or commercially produced (e.g. resistant starch, polydextrose, polyols, inulin and indigestible dextrins) carbohydrate. 	
 Physical Activity Level (PAL) The ratio of total energy expenditure to basal energy expenditure. The Physical Activity Level categories were defined as sedentary (PAL 1.0-1.39), low active (PAL 1.4-1.59), active (PAL 1.6-1.89), and very active (PAL 1.9-2.5). Physical Activity Level should not be confused with the physical activity coefficients (PA values) used the equations to estimate energy requirement. 	
 Vitamin E The requirement for vitamin E is based on the 2<i>R</i>-stereoisomeric forms of alpha-tocopherol only. This includes <i>RRR</i>-alpha-tocopherol, which occurs naturally in foods, and the 2<i>R</i>-stereoisomeric forms (<i>RRR</i>-, <i>RSR</i>-, <i>RRS</i>-, and <i>RSS</i>- forms) that occur in supplements and fortified foods (<i>all racemic</i> alpha-tocopherol). Other forms of vitamin E do not contribute toward meeting the requirement. Previously, vitamin E activity was reported in alpha-tocopherol equivalents (αTE), which included all forms of vitamin E. Alpha-tocopherol equivalents should be converted to milligrams of alpha-tocopherol. The UL for vitamin E applies to any isomeric form of supplemental alpha-tocopherol. 	;

REFERENCES:

- Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride (1997);
- Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (1998);
- Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000);
- Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001);
- Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (2002);

• Dietary Reference Intakes for Water, Potassium, Chloride, and Sulfate (2004). Available at www.nap.edu

Dietary Reference Intakes Abbreviations and Reference Heights and Weights

Abbreviations

See definitions and conversion factors for further details.

Al	Adequate Intake
AMDR	Acceptable Macronutrient Distribution Range
DFE	Dietary Folate Equivalent
EAR	Estimated Average Requirement
EER	Estimated Energy Requirement
g	gram
IU	International Unit
kcal	kilocalorie
kg	kilogram
m	metre
mg	milligram
N/A	Not Applicable
ND	Not Determinable
NE	Niacin Equivalent
PA	Physical Activity Coefficient
PAL	Physical Activity Level
RAE	Retinol Activity Equivalent
RDA	Recommended Dietary Allowance
RE	Retinol Equivalent
UL	Tolerable Upper Intake Level
μg	microgram
у	year

Reference Heights and Weights

	Reference Height (m)	Reference Weight (kg)	Reference Height (inches)	Reference Weight (pounds)
Infants				
2-6 mo	0.62	6	24	13
7-12 mo	0.71	9	28	20
Children				
1-3 y	0.86	12	34	27
4-8 y	1.15	20	45	44
Males				
9-13 y	1.44	36	57	79
14-18 y	1.74	61	68	134
19-30 y	1.77	70	70	154
Females				
9-13 y	1.44	37	57	81
14-18 y	1.63	54	64	119
19-30 y	1.63	57	64	126

Calculated from median height and median body mass index for ages 4 through 19 years from CDC/NCHS growth charts (http://www.cdc.gov/nchs/about/major/nhanes/growthcharts/clinical_charts.htm).

Since there is no evidence that weight should change with ageing if activity is maintained, the reference weights for adults 19-30 years of age apply to all adult age groups.

Dietary Reference Intakes Unit Conversion Factors

Vitamin A	1 RAE = 1 μg retinol = 3.33 IU retinol For preformed vitamin A, 1 RE = 1 RAE.
Carotenoids	 1 RAE = 12 μg beta-carotene 1 RAE = 24 μg alpha-carotene 1 RAE = 24 μg beta-cryptoxanthin To calculate RAE from RE of provitamin A carotenoids in foods, divide RE by 2.
Vitamin D	1 μg = 40 IU
Vitamin E	 mg alpha-tocopherol = 1.25 mg alpha-tocopherol equivalents (αTE) mg alpha-tocopherol = 1.49 IU <i>d</i>-alpha-tocopherol (natural, <i>RRR</i> form) mg alpha-tocopherol = 2.22 IU <i>dl</i>-alpha-tocopherol (synthetic, <i>all racemic</i> form)
Folate	1 DFE = 1 μg food folate 1 DFE = 0.6 μg folic acid from fortified food or from a supplement consumed with food 1 DFE = 0.5 μg folic acid from a supplement taken on an empty stomach
Niacin	1 NE = 1 mg niacin 1 NE = 60 mg tryptophan
Sodium	1 g sodium = 2.53 g salt
Height	1 inch = 0.0254 m
Weight	1 pound = 0.454 kg
Metric Units	1000 μg = 1 mg 1000 mg = 1 g 1000 g = 1 kg
Energy yield of macronutrients	Carbohydrate = 4 kcal /g Protein = 4 kcal /g Fat = 9 kcal /g Alcohol = 7 kcal /g

Dietary Reference Intakes Equations to estimate energy requirement

Infonto and vouna abilitara	
Infants and young children Estimated Energy Requireme	nt (kcal/day) = Total Energy Expenditure + Energy Deposition
0-3 months	EER = $(89 \times \text{weight } [\text{kg}] - 100) + 175$
4-6 months	EER = $(89 \times \text{weight } [\text{kg}] - 100) + 56$
7-12 months	EER = (89 × weight [kg] –100) + 22
13-35 months	EER = $(89 \times \text{weight [kg]} - 100) + 20$
Children and Adolescents 3 Estimated Energy Requirement	-18 years nt (kcal/day) = Total Energy Expenditure + Energy Deposition
Boys 3-8 years	EER = 88.5 – (61.9 × age [y]) + PA× { (26.7 × weight [kg]) + (903 × height [m]) } + 20
9-18 years	EER = 88.5 - (61.9 × age [y]) + PA× { (26.7 × weight [kg]) + (903 × height [m]) } + 25
Girls 3-8 years	EER = 135.3 – (30.8 \times age [y]) + PA \times { (10.0 \times weight [kg]) + (934 \times height [m]) } + 20
9-18 years	$EER = 135.3 - (30.8 \times age [y]) + PA \times \{ (10.0 \times weight [kg]) + (934 \times height [m]) \} + 25$
Adults 19 years and older Estimated Energy Requireme	nt (kcal/day) = Total Energy Expenditure
Men	EER = 662 – (9.53 × age [y]) + PA× { (15.91 × weight [kg]) + (539.6 × height [m]) }
Women	EER = 354 – (6.91 × age [y]) + PA× { (9.36 × weight [kg]) + (726 × height [m]) }
Pregnancy Estimated Energy Requireme	nt (kcal/day) = Non-pregnant EER + Pregnancy Energy Deposition
1 st trimester	EER = Non-pregnant EER + 0
2 nd trimester	EER = Non-pregnant EER + 340
3 rd trimester	EER = Non-pregnant EER + 452
Lactation Estimated Energy Requireme	- nt (kcal/day) = Non-pregnant EER + Milk Energy Output – Weight Loss
0-6 months postpartum	EER = Non-pregnant EER + 500 – 170
7-12 months postpartum	EER = Non-pregnant EER + 400 – 0

These equations provide an estimate of energy requirement. Relative body weight (i.e. loss, stable, gain) is the preferred indicator of energy adequacy.

Physical Activity Coefficients (PA values) for use in EER equations

	Sedentary (PAL 1.0-1.39)	Low Active (PAL 1.4-1.59)	Active (PAL 1.6-1.89)	Very Active (PAL 1.9-2.5)
	Typical daily living activities (e.g., household tasks, walking to the bus)	Typical daily living activities PLUS 30 - 60 minutes of daily moderate activity (ex. walking at 5-7 km/h)	Typical daily living activities PLUS At least 60 minutes of daily moderate activity	Typical daily living activities PLUS At least 60 minutes of daily moderate activity PLUS An additional 60 minutes of vigorous activity or 120 minutes of moderate activity
Boys 3 - 18 y	1.00	1.13	1.26	1.42
Girls 3 - 18 y	1.00	1.16	1.31	1.56
Men 19 y +	1.00	1.11	1.25	1.48
Women 19 y +	1.00	1.12	1.27	1.45

Dietary Reference Intakes Reference Values for Vitamins

			Vitami	i n A ^{1, 2}					Vitami	n D **			Ň	/itamin E	5	Vitamin K	
Unit	μ	g/day (RAE	=)	I	J/day (RAE	=)		µg/day ⁴			IU/day ⁴			mg/day		μg/	day
	EAR	RDA/AI	ÚL 3	EAR	RDA/AI	ÚL 3	EAR	RDA/AI	UL	EAR	RDA/AI	UL	EAR	RDA/AI	UL 6	AI	UL 7
Infants																	
0-6 mo	ND	400*	600	ND	1333*	2000	ND	10*	25	ND	400*	1000	ND	4*	ND	2.0*	ND
7-12 mo	ND	500*	600	ND	1667*	2000	ND	10*	38	ND	400*	1500	ND	5*	ND	2.5*	ND
Children																	
1-3 y	210	300	600	700	1000	2000	10	15	63	400	600	2500	5	6	200	30*	ND
4-8 y	275	400	900	917	1333	3000	10	15	75	400	600	3000	6	7	300	55*	ND
Males																	
9-13 y	445	600	1700	1483	2000	5667	10	15	100	400	600	4000	9	11	600	60*	ND
14-18 y	630	900	2800	2100	3000	9333	10	15	100	400	600	4000	12	15	800	75*	ND
19-30 y	625	900	3000	2083	3000	10000	10	15	100	400	600	4000	12	15	1000	120*	ND
31-50 y	625	900	3000	2083	3000	10000	10	15	100	400	600	4000	12	15	1000	120*	ND
51-70 y	625	900	3000	2083	3000	10000	10	15	100	400	600	4000	12	15	1000	120*	ND
>70 y	625	900	3000	2083	3000	10000	10	20	100	400	800	4000	12	15	1000	120*	ND
Females																	
9-13 y	420	600	1700	1400	2000	5667	10	15	100	400	600	4000	9	11	600	60*	ND
14-18 y	485	700	2800	1617	2333	9333	10	15	100	400	600	4000	12	15	800	75*	ND
19-30 y	500	700	3000	1667	2333	10000	10	15	100	400	600	4000	12	15	1000	90*	ND
31-50 y	500	700	3000	1667	2333	10000	10	15	100	400	600	4000	12	15	1000	90*	ND
51-70 y	500	700	3000	1667	2333	10000	10	15	100	400	600	4000	12	15	1000	90*	ND
>70 y	500	700	3000	1667	2333	10000	10	20	100	400	800	4000	12	15	1000	90*	ND
Pregnancy																	
<u>< 18 y</u>	530	750	2800	1767	2500	9333	10	15	100	400	600	4000	12	15	800	75*	ND
19-30 y	550	770	3000	1833	2567	10000	10	15	100	400	600	4000	12	15	1000	90*	ND
31-50 y	550	770	3000	1833	2567	10000	10	15	100	400	600	4000	12	15	1000	90*	ND
Lactation																	
<u>< 1</u> 8 y	885	1200	2800	2950	4000	9333	10	15	100	400	600	4000	16	19	800	75*	ND
1 <u>9-</u> 30 y	900	1300	3000	3000	4333	10000	10	15	100	400	600	4000	16	19	1000	90*	ND
31-50 y	900	1300	3000	3000	4333	10000	10	15	100	400	600	4000	16	19	1000	90*	ND

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (Als) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

** New 2010 values have replaced previous 1997 values.

¹As Retinol Activity Equivalents (RAE). See conversion factors for more details. ²No DRIs are established for beta-carotene or other carotenoids. However, existing recommendations for consumption of carotenoid-rich fruits and vegetables are supported.

³ UL as preformed vitamin A only. Beta-carotene supplements are advised only to serve as a provitamin A source for individuals at risk of vitamin A deficiency.

⁴ These reference values assume minimal sun exposure.

⁵ EAR and RDA/AI as alpha-tocopherol (2*R*-stereoisomeric forms) only. See conversion factors for more details.

⁶ The UL for vitamin E applies only to synthetic vitamin E (all isomeric forms) obtained from supplements, fortified foods, or a combination of the two.

⁷ Due to lack of suitable data, a UL could not be established for vitamin K. This does not mean that there is no potential for adverse effects resulting from high intakes.

Dietary Reference Intakes Reference Values for Vitamins

	١	Vitamin C	8		Thiamin		I	Riboflaviı	n		Niacin ¹⁰	0	Vitamin B6			
Unit		mg/day			mg/day			mg/day		r	ng/day (NE	i)		mg/day		
	EAR	RDA/AI	UL	EAR	RDA/AI	٥ UU	EAR	RDA/AI	UL 9	EAR	RDA/AI	UL 11	EAR	RDA/AI	UL	
Infants																
0-6 mo	ND	40*	ND	ND	0.2*	ND	ND	0.3*	ND	ND	2* a	ND	ND	0.1*	ND	
7-12 mo	ND	50*	ND	ND	0.3*	ND	ND	0.4*	ND	ND	4*	ND	ND	0.3*	ND	
Children																
1-3 y	13	15	400	0.4	0.5	ND	0.4	0.5	ND	5	6	10	0.4	0.5	30	
4-8 y	22	25	650	0.5	0.6	ND	0.5	0.6	ND	6	8	15	0.5	0.6	40	
Males																
9-13 y	39	45	1200	0.7	0.9	ND	0.8	0.9	ND	9	12	20	0.8	1.0	60	
14-18 y	63	75	1800	1.0	1.2	ND	1.1	1.3	ND	12	16	30	1.1	1.3	80	
19-30 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.1	1.3	100	
31-50 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.1	1.3	100	
51-70 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.4	1.7	100	
>70 y	75	90	2000	1.0	1.2	ND	1.1	1.3	ND	12	16	35	1.4	1.7	100	
Females																
9-13 y	39	45	1200	0.7	0.9	ND	0.8	0.9	ND	9	12	20	0.8	1.0	60	
14-18 y	56	65	1800	0.9	1.0	ND	0.9	1.0	ND	11	14	30	1.0	1.2	80	
19-30 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	11	14	35	1.1	1.3	100	
31-50 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	11	14	35	1.1	1.3	100	
51-70 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	11	14	35	1.3	1.5	100	
>70 y	60	75	2000	0.9	1.1	ND	0.9	1.1	ND	11	14	35	1.3	1.5	100	
Pregnancy																
<u><</u> 18 y	66	80	1800	1.2	1.4	ND	1.2	1.4	ND	14	18	30	1.6	1.9	80	
19-30 y	70	85	2000	1.2	1.4	ND	1.2	1.4	ND	14	18	35	1.6	1.9	100	
31-50 y	70	85	2000	1.2	1.4	ND	1.2	1.4	ND	14	18	35	1.6	1.9	100	
Lactation																
<u><</u> 18 y	96	115	1800	1.2	1.4	ND	1.3	1.6	ND	13	17	30	1.7	2.0	80	
19-30 y	100	120	2000	1.2	1.4	ND	1.3	1.6	ND	13	17	35	1.7	2.0	100	
31-50 y	100	120	2000	1.2	1.4	ND	1.3	1.6	ND	13	17	35	1.7	2.0	100	

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (Als) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

⁸ Because smoking increases oxidative stress and metabolic turnover of vitamin C, the requirement for smokers is increased by 35 mg/day.
⁹ Due to lack of suitable data, ULs could not be established for thiamin and riboflavin. This does not mean that there is no potential for adverse effects resulting from high intakes.
¹⁰ As Niacin Equivalents (NE). See conversion factors for more details.
¹¹ The UL for niacin applies only to synthetic forms obtained from supplements, fortified foods, or a combination of the two.

^a As preformed niacin, not NE, for this age group.

Dietary Reference Intakes Reference Values for Vitamins

		Folate ¹²	2	V	itamin B′	12	Panto Ac	thenic cid	Bio	otin	Choline ¹⁵		
Unit	μ	ıg/day (DFE)		µg/day		mg/	day	μg/	day	mg/	day	
	EAR	RDA/AI	UL ¹³	EAR	RDA/AI	UL 14	Al	UL 14	Al	UL 14	Al	UL	
Infants													
0-6 mo	ND	65*	ND	ND	0.4*	ND	1.7*	ND	5*	ND	125*	ND	
7-12 mo	ND	80*	ND	ND	0.5*	ND	1.8*	ND	6*	ND	150*	ND	
Children													
1-3 y	120	150	300	0.7	0.9	ND	2*	ND	8*	ND	200*	1000	
4-8 y	160	200	400	1.0	1.2	ND	3*	ND	12*	ND	250*	1000	
Males													
9-13 y	250	300	600	1.5	1.8	ND	4*	ND	20*	ND	375*	2000	
14-18 y	330	400	800	2.0	2.4	ND	5*	ND	25*	ND	550*	3000	
19-30 y	320	400	1000	2.0	2.4	ND	5*	ND	30*	ND	550*	3500	
31-50 y	320	400	1000	2.0	2.4	ND	5*	ND	30*	ND	550*	3500	
51-70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	550*	3500	
>70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	550*	3500	
Females													
9-13 y	250	300	600	1.5	1.8	ND	4*	ND	20*	ND	375*	2000	
14-18 y	330	400 ^b	800	2.0	2.4	ND	5*	ND	25*	ND	400*	3000	
19-30 y	320	400 ^b	1000	2.0	2.4	ND	5*	ND	30*	ND	425*	3500	
31-50 y	320	400 ^b	1000	2.0	2.4	ND	5*	ND	30*	ND	425*	3500	
51-70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	425*	3500	
>70 y	320	400	1000	2.0	2.4 ^d	ND	5*	ND	30*	ND	425*	3500	
Pregnancy													
<u><</u> 18 y	520	^c 000	800	2.2	2.6	ND	6*	ND	30*	ND	450*	3000	
19-30 y	520	^ء 000	1000	2.2	2.6	ND	6*	ND	30*	ND	450*	3500	
31-50 y	520	600 ^c	1000	2.2	2.6	ND	6*	ND	30*	ND	450*	3500	
Lactation													
<u><</u> 18 y	450	500	800	2.4	2.8	ND	7*	ND	35*	ND	550*	3000	
19-30 y	450	500	1000	2.4	2.8	ND	7*	ND	35*	ND	550*	3500	
31-50 y	450	500	1000	2.4	2.8	ND	7*	ND	35*	ND	550*	3500	

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

¹² As Dietary Folate Equivalents (DFE). See conversion factors for more details.
 ¹³ The UL for folate applies only to synthetic forms obtained from supplements, fortified foods, or a combination of the two.

¹⁴ Due to lack of suitable data, ULs could not be established for vitamin B12, pantothenic acid or biotin. This does not mean that there is no potential for adverse effects resulting from high intakes.

¹⁵ Although Als have been set for choline, there are few data to assess whether a dietary supply of choline is needed at all stages of the life cycle, and it may be that the choline requirement can be met by endogenous synthesis at some of these stages.

^b In view of evidence linking the use of supplements containing folic acid before conception and during early pregnancy with reduced risk of neural tube defects in the fetus, it is recommended that all women capable of becoming pregnant take a supplement containing 400µg of folic acid every day, in addition to the amount of folate found in a healthy diet.

^c It is assumed that women will continue consuming 400 µg folic acid from supplements until their pregnancy is confirmed and they enter prenatal care. The critical time for formation of the neural tube is shortly after conception.

^d Because 10 to 30 percent of older people may malabsorb food-bound vitamin B12, it is advisable for those older than 50 years to meet the RDA mainly by consuming foods fortified with vitamin B12 or a supplement containing vitamin B12.

Dietary Reference Intakes Reference Values for Elements

	Ars	enic ¹⁶	Во	ron	(Calcium *	**	Chro	mium		Copper		Fluc	oride	lodine		
Unit	N	/A	mg	day		mg/day		μg/	day		µg/day		mg	/day		µg/day	
	AI	UL 17	AI	UL	EAR	RDA/AI	UL	AI	UL 17	EAR	RDA/AI	UL	AI	UL	EAR	RDA/AI	UL
Infants																	
0-6 mo	ND	ND	ND	ND	ND	200*	1000	0.2*	ND	ND	200*	ND	0.01*	0.7	ND	110*	ND
7-12 mo	ND	ND	ND	ND	ND	260*	1500	5.5*	ND	ND	220*	ND	0.5*	0.9	ND	130*	ND
Children																	
1-3 y	ND	ND	ND	3	500	700	2500	11*	ND	260	340	1000	0.7*	1.3	65	90	200
4-8 y	ND	ND	ND	6	800	1000	2500	15*	ND	340	440	3000	1*	2.2	65	90	300
Males																	
9-13 y	ND	ND	ND	11	1100	1300	3000	25*	ND	540	700	5000	2*	10	73	120	600
14-18 y	ND	ND	ND	17	1100	1300	3000	35*	ND	685	890	8000	3*	10	95	150	900
19-30 y	ND	ND	ND	20	800	1000	2500	35*	ND	700	900	10000	4*	10	95	150	1100
31-50 y	ND	ND	ND	20	800	1000	2500	35*	ND	700	900	10000	4*	10	95	150	1100
51-70 y	ND	ND	ND	20	800	1000	2000	30*	ND	700	900	10000	4*	10	95	150	1100
>70 y	ND	ND	ND	20	1000	1200	2000	30*	ND	700	900	10000	4*	10	95	150	1100
Females																	
9-13 y	ND	ND	ND	11	1100	1300	3000	21*	ND	540	700	5000	2*	10	73	120	600
14-18 y	ND	ND	ND	17	1100	1300	3000	24*	ND	685	890	8000	3*	10	95	150	900
19-30 y	ND	ND	ND	20	800	1000	2500	25*	ND	700	900	10000	3*	10	95	150	1100
31-50 y	ND	ND	ND	20	800	1000	2500	25*	ND	700	900	10000	3*	10	95	150	1100
51-70 y	ND	ND	ND	20	1000	1200	2000	20*	ND	700	900	10000	3*	10	95	150	1100
>70 y	ND	ND	ND	20	1000	1200	2000	20*	ND	700	900	10000	3*	10	95	150	1100
Pregnancy																	
<u><</u> 18 y	ND	ND	ND	17	1100	1300	3000	29*	ND	785	1000	8000	3*	10	160	220	900
19-30 y	ND	ND	ND	20	800	1000	2500	30*	ND	800	1000	10000	3*	10	160	220	1100
31-50 y	ND	ND	ND	20	800	1000	2500	30*	ND	800	1000	10000	3*	10	160	220	1100
Lactation																	
<u><</u> 18 y	ND	ND	ND	17	1100	1300	3000	44*	ND	985	1300	8000	3*	10	209	290	900
19-30 y	ND	ND	ND	20	800	1000	2500	45*	ND	1000	1300	10000	3*	10	209	290	1100
31-50 y	ND	ND	ND	20	800	1000	2500	45*	ND	1000	1300	10000	3*	10	209	290	1100

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

** New 2010 values have replaced previous 1997 values.
 ¹⁶ Although a UL was not determined for arsenic, there is no justification for adding arsenic to food or supplements.
 ¹⁷ Due to lack of suitable data, ULs could not be established for arsenic and chromium. This does not mean that there is no potential for adverse effects resulting from high intakes.

Dietary Reference Intakes Reference Values for Elements

		Iron ¹⁸		N	lagnesiu	m	Mang	anese	M	olybdenı	ım	Nic	:kel	Phosphorus			
Unit		mg/day			mg/day		mg/	/day		µg/day		mg/	/day		mg/day		
	EAR	RDA/AI	UL	EAR	RDA/AI	UL 19	AI	UL	EAR	RDA/AI	UL	AI	UL	EAR	RDA/AI	UL	
Infants																	
0-6 mo	ND	0.27*	40	ND	30*	ND	0.003*	ND	ND	2*	ND	ND	ND	ND	100*	ND	
7-12 mo	6.9	11	40	ND	75*	ND	0.6*	ND	ND	3*	ND	ND	ND	ND	275*	ND	
Children																	
1-3 y	3.0	7	40	65	80	65	1.2*	2	13	17	300	ND	0.2	380	460	3000	
4-8 y	4.1	10	40	110	130	110	1.5*	3	17	22	600	ND	0.3	405	500	3000	
Males																	
9-13 y	5.9	8	40	200	240	350	1.9*	6	26	34	1100	ND	0.6	1055	1250	4000	
14-18 y	7.7	11	45	340	410	350	2.2*	9	33	43	1700	ND	1.0	1055	1250	4000	
19-30 y	6	8	45	330	400	350	2.3*	11	34	45	2000	ND	1.0	580	700	4000	
31-50 y	6	8	45	350	420	350	2.3*	11	34	45	2000	ND	1.0	580	700	4000	
51-70 y	6	8	45	350	420	350	2.3*	11	34	45	2000	ND	1.0	580	700	4000	
>70 y	6	8	45	350	420	350	2.3*	11	34	45	2000	ND	1.0	580	700	3000	
Females																	
9-13 y	5.7e	8 e	40	200	240	350	1.6*	6	26	34	1100	ND	0.6	1055	1250	4000	
14-18 y	7.9°	15 °	45	300	360	350	1.6*	9	33	43	1700	ND	1.0	1055	1250	4000	
19-30 y	8.1°	18 ^e	45	255	310	350	1.8*	11	34	45	2000	ND	1.0	580	700	4000	
31-50 y	8.1 °	18 °	45	265	320	350	1.8*	11	34	45	2000	ND	1.0	580	700	4000	
51-70 y	5°	8 e	45	265	320	350	1.8*	11	34	45	2000	ND	1.0	580	700	4000	
>70 y	5°	8 e	45	265	320	350	1.8*	11	34	45	2000	ND	1.0	580	700	3000	
Pregnancy																	
<u><</u> 18 y	23	27	45	335	400	350	2.0*	9	40	50	1700	ND	1.0	1055	1250	3500	
19-30 y	22	27	45	290	350	350	2.0*	11	40	50	2000	ND	1.0	580	700	3500	
31-50 y	22	27	45	300	360	350	2.0*	11	40	50	2000	ND	1.0	580	700	3500	
Lactation																	
<u><</u> 18 y	7	10	45	300	360	350	2.6*	9	35	50	1700	ND	1.0	1055	1250	4000	
1 <u>9-</u> 30 y	6.5	9	45	255	310	350	2.6*	11	36	50	2000	ND	1.0	580	700	4000	
31-50 y	6.5	9	45	265	320	350	2.6*	11	36	50	2000	ND	1.0	580	700	4000	

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (Als) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

¹⁸ The requirement for iron is 1.8 times higher for vegetarians due to the lower bioavailability of iron from a vegetarian diet.
 ¹⁹ The UL for magnesium represents intake from a pharmacological agent only and does not include intake from food and water.

e For the EAR and RDA, it is assumed that girls younger than 14 years do not menstruate and that girls 14 years and older do menstruate. It is assumed that women 51 years and older are post-menopausal.

Dietary Reference Intakes Reference Values for Elements

		Selenium	1	Sili	con ²⁰	Vana	dium ²²		Zinc ²³		Potas	sium ²⁴	Sod	ium ²⁵	Chlo	oride ²⁶	Su	Ifate 27
Unit		µg/day		N	/A	mg/	/day		mg/day		mg	/day	mg	/day	mg	/day	N	/A
	EAR	RDA/AI	UL	Al	UL 21	Al	UL	EAR	RDA/AI	UL	Al	UL 21	Al	UL	Al	UL	Al	UL 21
Infants																		
0-6 mo	ND	15*	45	ND	ND	ND	ND	ND	2*	4	400*	ND	120*	ND	180*	ND	ND	ND
7-12 mo	ND	20*	60	ND	ND	ND	ND	2.5	3	5	700*	ND	370*	ND	570*	ND	ND	ND
Children																		
1-3 y	17	20	90	ND	ND	ND	ND	2.5	3	7	3000*	ND	1000*	1500	1500*	2300	ND	ND
4-8 y	23	30	150	ND	ND	ND	ND	4.0	5	12	3800*	ND	1200*	1900	1900*	2900	ND	ND
Males																		
9-13 y	35	40	280	ND	ND	ND	ND	7.0	8	23	4500*	ND	1500*	2200	2300*	3400	ND	ND
14-18 y	45	55	400	ND	ND	ND	ND	8.5	11	34	4700*	ND	1500*	2300	2300*	3600	ND	ND
19-30 y	45	55	400	ND	ND	ND	1.8	9.4	11	40	4700*	ND	1500*	2300	2300*	3600	ND	ND
31-50 y	45	55	400	ND	ND	ND	1.8	9.4	11	40	4700*	ND	1500*	2300	2300*	3600	ND	ND
51-70 y	45	55	400	ND	ND	ND	1.8	9.4	11	40	4700*	ND	1300*	2300	2000*	3600	ND	ND
>70 y	45	55	400	ND	ND	ND	1.8	9.4	11	40	4700*	ND	1200*	2300	1800*	3600	ND	ND
Females																		
9-13 y	35	40	280	ND	ND	ND	ND	7.0	8	23	4500*	ND	1500*	2200	2300*	3400	ND	ND
14-18 y	45	55	400	ND	ND	ND	ND	7.3	9	34	4700*	ND	1500*	2300	2300*	3600	ND	ND
19-30 y	45	55	400	ND	ND	ND	1.8	6.8	8	40	4700*	ND	1500*	2300	2300*	3600	ND	ND
31-50 y	45	55	400	ND	ND	ND	1.8	6.8	8	40	4700*	ND	1500*	2300	2300*	3600	ND	ND
51-70 y	45	55	400	ND	ND	ND	1.8	6.8	8	40	4700*	ND	1300*	2300	2000*	3600	ND	ND
>70 y	45	55	400	ND	ND	ND	1.8	6.8	8	40	4700*	ND	1200*	2300	1800*	3600	ND	ND
Pregnancy	10	60	100					10 5	40	24	4700*		4500*	0000	0000*	2000		
<u>< 18 y</u>	49	60	400	ND	ND	ND	ND	10.5	12	34	4700*	ND	1500*	2300	2300*	3600	ND	ND
19-30 y	49	60 60	400	ND ND	ND ND	ND ND	ND	9.5 9.5	11	40	4700*	ND ND	1500*	2300	2300*	3600	ND	ND
31-50 y	49	00	400	UN	IND	ND	ND	9.0	11	40	4700*	ND	1500*	2300	2300*	3600	ND	ND
Lactation	50	70	100					10.0	40	24	F100*		1500*	2200	2200*	2600		
<u>< 18 y</u>	59 50	70	400	ND	ND	ND	ND	10.9 10.4	13	34	5100*	ND	1500*	2300	2300*	3600	ND	ND
19-30 y	59 50	70	400	ND	ND	ND	ND ND		12	40	5100* 5100*	ND ND	1500*	2300	2300*	3600	ND	ND
31-50 y	59	70	400	ND	ND	ND	ND	10.4	12	40	5100"	ND	1500*	2300	2300*	3600	ND	ND

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (Als) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

²⁰ Although silicon has not been shown to cause adverse effects in humans, there is no justification for adding silicon to supplements.
 ²¹ Due to lack of suitable data, ULs could not be established for silicon, potassium, and sulfate. This does not mean that there is no potential for adverse effects resulting from high intakes.

²² Although vanadium in food has not been shown to cause adverse effects in humans, there is no justification for adding vanadium to food and vanadium supplements should be used with caution. The UL is based on adverse effects in laboratory animals and this data could be used to set a UL for adults but not children and adolescents.

²³ The requirement for zinc may be as much as 50 percent greater for vegetarians, particularly for strict vegetarians whose major food staples are grains and legumes, due to the lower bioavailability of zinc from a vegetarian diet.

²⁴ The beneficial effects of potassium appear to be mainly from the forms of potassium found naturally in foods such as fruits and vegetables. Supplemental potassium should only be provided under medical supervision because of the well-documented potential for toxicity.

²⁵ Grams of sodium \times 2.53 = grams of salt.

²⁶ Sodium and chloride are normally found in foods together as sodium chloride (table salt). For this reason, the AI and UL for chloride are set at a level equivalent on a molar basis to those for sodium, since almost all dietary chloride comes with sodium added during processing or consumption of foods. ²⁷ An AI for sulfate was not established because sulfate requirements are met when dietary intakes contain recommended levels of sulfur amino acids (protein).

Dietary Reference Intakes Reference Values for Macronutrients

Unit	Carbohydrate (Digestible)		Total Protein ²⁹			Total Fat		Linoleic Acid (n-6)		α-linolenic Acid (n-3)		Total Fibre ³¹		Total Water ³³			
		g/kg/day		g/day ³⁰		g/day		g/day		g/day		g/day		Litres/day			
	EAR	RDA/AI	UL 28	EAR	RDA/AI	RDA/AI	UL 28	Al	UL 28	AI	UL 28	Al	UL 28	Al 32	UL 28	Al	UL 28
Infants																	
0-6 mo	ND	60*	ND	ND	1.52*	9.1*	ND	31*	ND	4.4*	ND	0.5*	ND	ND	ND	0.7*	ND
7-12 mo	ND	95*	ND	1.0	1.2	11.0	ND	30*	ND	4.6*	ND	0.5*	ND	ND	ND	0.8*	ND
Children																	
1-3 y	100	130	ND	0.87	1.05	13	ND	ND	ND	7*	ND	0.7*	ND	19*	ND	1.3*	ND
4-8 y	100	130	ND	0.76	0.95	19	ND	ND	ND	10*	ND	0.9*	ND	25*	ND	1.7*	ND
Males																	
9-13 y	100	130	ND	0.76	0.95	34	ND	ND	ND	12*	ND	1.2*	ND	31*	ND	2.4*	ND
14-18 y	100	130	ND	0.73	0.85	52	ND	ND	ND	16*	ND	1.6*	ND	38*	ND	3.3*	ND
19-30 y	100	130	ND	0.66	0.80	56	ND	ND	ND	17*	ND	1.6*	ND	38*	ND	3.7*	ND
31-50 y	100	130	ND	0.66	0.80	56	ND	ND	ND	17*	ND	1.6*	ND	38*	ND	3.7*	ND
51-70 y	100	130	ND	0.66	0.80	56	ND	ND	ND	14*	ND	1.6*	ND	30*	ND	3.7*	ND
>70 y	100	130	ND	0.66	0.80	56	ND	ND	ND	14*	ND	1.6*	ND	30*	ND	3.7*	ND
Females																	
9-13 y	100	130	ND	0.76	0.95	34	ND	ND	ND	10*	ND	1.0*	ND	26*	ND	2.1*	ND
14-18 y	100	130	ND	0.71	0.85	46	ND	ND	ND	11*	ND	1.1*	ND	26*	ND	2.3*	ND
19-30 y	100	130	ND	0.66	0.80	46	ND	ND	ND	12*	ND	1.1*	ND	25*	ND	2.7*	ND
31-50 y	100	130	ND	0.66	0.80	46	ND	ND	ND	12*	ND	1.1*	ND	25*	ND	2.7*	ND
51-70 y	100	130	ND	0.66	0.80	46	ND	ND	ND	11*	ND	1.1*	ND	21*	ND	2.7*	ND
>70 y	100	130	ND	0.66	0.80	46	ND	ND	ND	11*	ND	1.1*	ND	21*	ND	2.7*	ND
Pregnancy																	
< 18 y	135	175	ND	0.88 f	1.1 ^f	71 ^f	ND	ND	ND	13*	ND	1.4*	ND	28*	ND	3.0*	ND
1 <u>9-</u> 30 y	135	175	ND	0.88 f	1.1 ^f	71 ^f	ND	ND	ND	13*	ND	1.4*	ND	28*	ND	3.0*	ND
31-50 y	135	175	ND	0.88 f	1.1 ^f	71 ^f	ND	ND	ND	13*	ND	1.4*	ND	28*	ND	3.0*	ND
Lactation				0.00													
<u>< 18 y</u>	160	210	ND	1.05	1.3	71	ND	ND	ND	13*	ND	1.3*	ND	29*	ND	3.8*	ND
<u><</u> 10 y 19-30 y	160	210	ND	1.05	1.3	71	ND	ND	ND	13*	ND	1.3*	ND	29*	ND	3.8*	ND
31-50 y	160	210	ND	1.05	1.3	71	ND	ND	ND	13*	ND	1.3*	ND	29*	ND	3.8*	ND

This table presents Estimated Average Requirements (EARs) in italics, Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). Tolerable Upper Intake Levels (ULs) are in shaded columns.

²⁸ Although a UL was not set for any of the macronutrients, the absence of definitive data does not signify that people can tolerate chronic intakes of these substances at high levels.

²⁹ Available evidence does not support recommending a separate protein requirement for vegetarians who consume complimentary mixtures of plant proteins, as these can provide the same quality of protein as that from animal proteins.

³⁰ Recommendations for total protein are determined as the amount needed per kg body weight multiplied by the reference weight.
 ³¹ Total fibre is defined as the sum of dietary fibre and functional fibre. See definitions for further details.
 ³² The AI for total fibre is based on 14 g/1000 kcal multiplied by the median usual daily energy intake from the Continuing Survey of Food Intakes by Individuals (CSFII 1994-1996, 1998).

³³ Total water includes drinking water, water in beverages, and water that is part of food.

^f The EAR and RDA for pregnancy are only for the second half of pregnancy. For the first half of pregnancy, protein requirements are the same as those of the nonpregnant woman.

Dietary Reference Intakes Reference Values for Macronutrients

	Total Carbohydrate	Total Protein	Total Fat	n-6 polyunsaturated fatty acids (linoleic acid)	n-3 polyunsaturated fatty acids (α-linolenic acid)
Males & Females ³⁴	Percent of Energy	Percent of Energy	Percent of Energy	Percent of Energy	Percent of Energy 35
1-3 years	45 – 65 %	5 – 20 %	30 – 40 %	5 – 10 %	0.6 – 1.2 %
4-18 years	45 – 65 %	10 – 30 %	25 – 35 %	5 – 10 %	0.6 – 1.2 %
19 years and over	45 – 65 %	10 – 35 %	20 – 35 %	5 – 10 %	0.6 – 1.2 %

Acceptable Macronutrient Distribution Ranges (AMDR)

³⁴ Includes pregnant and lactating women.
 ³⁵ Up to 10% of the AMDR can be consumed as eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA).

Additional Macronutrient Recommendations

Saturated fatty acids					
Trans fatty acids	As low as possible while consuming a nutritionally adequate diet				
Dietary cholesterol					
Added sugars ^g	Limit to no more than 25% of total energy				

A UL was not set for saturated fatty acids, trans fatty acids, dietary cholesterol, or added sugars.

^{*g*} Added sugars are defined as sugars and syrups that are added to foods during processing or preparation. Although there were insufficient data to set a UL for added sugars, this maximal intake level is suggested to prevent the displacement of foods that are major sources of essential micronutrients.

Protein Quality Scoring Pattern (age 1 year and older)

	Recommended pattern
Amino Acid	mg/g protein
Histidine	18
Isoleucine	25
Leucine	55
Lysine	51
Methionine + Cysteine	25
Phenylalanine + Tyrosine	47
Threonine	27
Tryptophan	7
Valine	32

Reference amino acid pattern for use in evaluating the quality of food proteins using the protein digestibility corrected amino acid score (PDCAAS). Based on Estimated Average Requirements for both indispensable amino acids and for total protein for 1-3 year olds.

Physical Activity Recommendation

To prevent weight gain and accrue additional health benefits of physical activity, 60 minutes of daily moderate intensity activity is recommended in addition to the activities required by a sedentary lifestyle. This amount of physical activity leads to an "active" lifestyle.