
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Enabling In-situ Programmability in Network Data
Plane: From Architecture to Language

Yong Feng and Zhikang Chen, Tsinghua University;
Haoyu Song, Futurewei Technologies; Wenquan Xu, Jiahao Li,

Zijian Zhang, Tong Yun, Ying Wan, and Bin Liu, Tsinghua University
https://www.usenix.org/conference/nsdi22/presentation/feng

Enabling In-situ Programmability in Network Data Plane:
From Architecture to Language

Yong Feng1, Zhikang Chen1, Haoyu Song2, Wenquan Xu1,
Jiahao Li1, Zijian Zhang1, Tong Yun1, Ying Wan1, and Bin Liu1

1Tsinghua University, China, 2Futurewei Technologies, USA

Abstract
In-situ programmability refers to the capability for network

devices to update data plane functions and protocol process-

ing logic at runtime without interrupting the services, driven

by dynamic and interactive network operations towards au-

tonomous networks. The existing programmable switch archi-

tecture (e.g., PISA) and programming language (e.g., P4) were

designed for monolithic and static implementation, which re-

quires a complete programming and deployment cycle for

functional update, incurring long delay and service interrup-

tion. Addressing the fundamental reasons for such inflexibil-

ity, we design a new In-situ Programmable Switch Architec-

ture (IPSA) and the corresponding design flow using rP4, a

P4 language extension, as a fix. The compiler contains algo-

rithms to support efficient resource mapping for both base

design and incremental updates. To manifest the in-situ pro-

gramming feasibility, we demonstrate several practical use

cases on both a software switch, ipbm, and an FPGA-based

prototype. Our experiments and analysis show that IPSA in-

curs moderate hardware cost which can be justified by its

benefits and compensated by newer chip technologies. The

in-situ programmability enabled by IPSA and rP4 advances

the state of the art of programmable networks and opens a

promising new design space.

1 Introduction

High-performance networking devices are usually built with

hardware centered on a forwarding chipset [1–5]. The di-

verse network types require varied feature sets; new protocols

(e.g., SRv6 [6]) and functions (e.g., INT [7]) keep emerging;

meanwhile, the demand for higher throughput never relents.

It becomes increasingly uneconomical or even infeasible to

integrate all needed features and functions in a single chip at

design time. While the future networks are expected to evolve

to be autonomous with the capability of self-provisioning,

self-diagnosing, and self-healing, the network operations will

become more dynamic and interactive, aggravating the per-

formance and flexibility pressure on network data plane.

We argue that the network data plane requires the in-situ

programmability, which refers to the capability for network

devices to update data plane functions and protocol processing

logic at runtime without interrupting the services. Specifically,

it ensures that (1) the on-demand and incremental part can

be patched into the existing system in service without full de-

sign recompiling and reloading, (2) unused functions can be

removed to preserve resource and energy, and (3) the update

process has near-zero impact on network services and incurs

little delay, permitting realtime interactive control loops. The

need for in-situ programmability is evidenced by the follow-

ing non-exhaustive list of applications:

Network slicing. A network device can be programmed to

support multi-tenancy using network slicing [8,9]. Due to the

resource limitation and the application dynamics, tenants with

custom policy and processing logic may be added, removed,

or updated at runtime. Modifications for any tenant cannot

affect the other tenants.

Network telemetry and measurement. Dynamic visibility

is particularly useful to support closed control loops in au-

tonomous networks based on realtime network conditions.

However, such functions are either hard to foresee at design

time or too expensive to keep permanent (e.g., sketch [10]),

so it is better to make them on-demand at runtime. For ex-

ample, the sketch size can be changed to get better traffic

visibility as network pattern changes (e.g., DREAM [11] and

SCREAM [12]); iterative debugging and query installation

can be supported (e.g., Marple [13] and Path Query [14]);

flows specification and associated actions can be refined and

updated (e.g., Sonata [15] and ProgME [16]).

Trial on new protocols/algorithms. It was difficult to con-

duct live trials for new protocols/algorithms in production

networks, in fear of disturbing or even disrupting network

operation and incurring irrevocable damages. On the other

hand, there is no better way to understand their impact and

gain confidence. The dilemma can be dissolved by enabling

inserting new protocols/algorithms to in-service network de-

vices with a reliable failback procedure. Even better, a proven

update can be made permanent without a network overhaul.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 635

In-network Computing. Network devices can integrate a

partial function for applications such as caching [17], aggre-

gation [18], and coordination [19], to boost their performance

and reduce system cost. Such a function can be resource-

consuming but not always needed, and new functions may

emerge, so it is better to make them pluggable at runtime.

Memory refactoring and repurposing. As the scarcest re-

source in a switch, the on-chip memory is shared by lookup

tables, data cache, and packet buffers. The change of traffic

pattern and network scale may raise new network optimization

requirements or demand new functions, making it necessary

to enlarge or shrink a table’s width or depth, provision new

tables, or change a search key.

State preserving for stateful functions. Conventional device

updates can be destructive to the states of stateful functions

stored in registers and memory tables, which need to be re-

built from scratch or refreshed from the control plane. The

detriments can be avoided if the states are preserved through

hitless incremental updates.

Network data plane programmability has come a long way.

The reconfigurable chips (e.g., FPGA and Network Proces-

sor) were the earlier attempts to make network devices pro-

grammable. In recent years, data plane programmability was

pushed to a new height by two new developments. The packet

processing and forwarding architecture was abstracted as a

generic match-action pipeline (i.e., RMT-based PISA [20,21]),

enabling a new type of programmable ASIC conforming to

the architecture [3]; further, a high-level domain-specific lan-

guage P4 [22] was developed as the chief programming lan-

guage for such an architecture, which helps to accelerate the

development life cycle and support design reuse and cross-

platform migration. The flexibility has triggered numerous

innovations, such as in-network computing [17, 23, 24] and

programmable network visibility [7, 10, 25].

However, such programmability still falls short of the re-

quirements of the aforementioned applications. The funda-

mental issue is that such programmability is static and limited

to design time. The packet processing pipeline, once compiled

and installed, cannot be changed any more during the runtime.

Any new function update, no matter how minor it is, requires

modifying and recompiling the complete source code, swap-

ping in the resulting monolithic “binary”, and repopulating

all the tables, which inevitably introduce delay and service

interruption.

Several attempts have been made from different angles to

achieve higher flexibility for data-plane programmability [9,

26–29]. However, none of them can realize the desired in-situ

programmability in hardware. To this end, we reason a new

chip architecture other than PISA is needed, as well as the

corresponding programming model. Specifically, we make

the following contributions:

• We develop a new In-situ Programmable Switch Archi-

tecture (IPSA) with four key components to provide enough

flexibility for in-situ programming (Sec. 2).

• We design a P4 language extension, reconfigurable P4

(rP4) (Sec. 3.1), and develop the corresponding design flow

and compilers for IPSA-based device programming (Sec. 3.2);

we integrate in the rP4 compiler efficient algorithms to solve

the resource mapping issues raised by IPSA and incremen-

tal updates (Sec. 3.3); we detail the non-disruptive update

deployment procedure (Sec. 3.4).

• We implement an IPSA-complying software behavioral

model, ipbm, used as a tool to verify the rP4 compiler and test

applications, similar to the role of bmv2 to P4. We also imple-

ment an FPGA-based IPSA prototype and use it to demon-

strate several use cases (Sec. 4). We open source the rP4 spec-

ification, compiler, and ipbm [30]. Through experiments and

analysis, we confirm that IPSA/rP4 supports non-disruptive

and low-latency in-service updates, and exhibit the hardware

cost and potential trade-offs (Sec. 5).

After discussing the limitations, potentials, and future work

(Sec. 6), we brief the related work (Sec. 7) and conclude the

paper (Sec. 8)*.

2 In-situ Programmable Switch Architecture

2.1 Motivation
To make in-situ programmability possible, it is crucial to

understand why the current programmable switch architecture

and programming model are incapable. We summarize the

main reasons as follows:

• The packet header parser and the corresponding process-

ing logic are decoupled. The parsing states in the standalone

front parser are entangled with different pipeline stages, and

a function block cannot be made self-contained and indepen-

dent. Hence, an update may need to modify multiple places in

a program, which is cumbersome and error-prone. Moreover,

without knowing the actual processing a packet undergoes,

the front parser may parse fields that the pipeline never uses,

wasting parsing cycles and header vector storage.

• The pipeline stages are hardwired into a chain, on which

the actual packet processing pipeline is mapped in order, re-

sulting in several unfavorable consequences: (1) the maxi-

mum number of ingress and egress stages is fixed, limiting

the design flexibility; (2) unused stages are kept in the chain,

potentially increasing latency and power consumption; (3)

even if each physical stage can be programmed individually,

an update (e.g., inserting a stage into the pipeline) requires

to reprogram all the affected stages (e.g., pushing all stages

back to make room), which could be time-consuming.

• The memories for lookup tables are prorated over physical

stages, implying that (1) the processing logic migration results

in the associated table migration as well which increases

the update delay, and (2) if the table size required exceeds

*This paper extends our workshop paper [31] with updates including the

introduction of virtual pipeline, detailed resource mapping algorithms, non-

disruptive deployment procedure, and more evaluation results.

636 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

what is provisioned in a single stage, more stages need to be

combined, which reduces the effective pipeline stages.

• A pipeline-oriented P4 program can only be compiled into

a monolithic “binary” file in which the individual functions

are unextractable and the actual pipeline mapping is opaque to

programmers, making incremental updates impossible. Some

switches nominally support on-line reprogramming, suffering

from considerable service interruption and packet loss.

To overcome the inflexibility of PISA and support in-situ

programming, while retaining its match-action pipeline ab-

straction, we design a new switch architecture, IPSA, with

four major architectural changes. The overview of IPSA is

illustrated in Fig. 1.

Interconnection network

... ...

TM

Crossbar Switch

TCAM Table
Pool

TCAM Table
Pool

TCAM Table
Pool

TCAM Table
Pool

TCAM Table
Pool

SRAM Table
Pool

Disaggregated
Memory Pool

Virtual Pipeline

TSP TSPTSSP TSP TSP
Distributed

Parser

Templated
Stage Processor

I/O

TSP

executor
executor

m
atcher

m
atcher

parser
parser

Figure 1: Overview of IPSA.

2.2 Distributed On-demand Parsing
In-situ programming implies a modular design style in which

functions are self-contained. IPSA eliminates the front parser.

The complete parsing graph is split into sub-graphs and dis-

tributed just in time to each pipeline stage, ensuring the self-

sufficiency of each pipeline stage and avoiding unnecessary

parsing. The parsing cost is amortized over active pipeline

stages, making the design more scalable.

A parsing sub-graph in each stage instructs the local pars-

ing process. Instead of a Packet Header Vector (PHV), a win-

dow of packet header bytes plus some metadata pass through

the pipeline. The parsing result at each stage is recorded as

{hdr_id, hdr_offset, hdr_length}, which is also passed to sub-

sequent stages to avoid unnecessary re-parsing. A field in

a header can be obtained using the configured {fld_offset,
fld_length}. The design eliminates the need for deparsing at

the end of a pipeline. The offset management module is re-

sponsible for adjusting the parsed header offsets in the case

of header length change (e.g., MPLS label push and pop).

In the example shown in Fig. 2, the complete parser for

Ethernet, VLAN, and IPv4 is distributed into the first and the

third stages. To add IPv6 support later, we can write a stan-

dalone function module which takes care of its own parsing

need. There is no need to modify the other modules except for

configuring the branching gateway or flow actions in the new

module’s direct predecessors (see Fig. 2). The distribution of

 IPv6
Routing

0 (ethernet) 0 14 B
1(vlan) 14 B 4 B

0 0 14 B
1 14 B 4 B

0 0 14 B
1 14 B 4 B

2 (ipv4) 18 B 20 B

IPv4

Source MAC
Learning

Routable

IPv4
Routing

gateway

Ethernet
VLAN

<NONE>

IPv4

Stage 1

Stage 2

Stage 3

Extracted
Information

IPv6

header id offset length

PacketPacket

header id offset length

header id offset length

Add IPv6

Offset
Management

Figure 2: Distributed on-demand parsing.

a parser for a specific design is determined by the compiler.

The algorithm is provided in Sec. 3.3.

2.3 Templated Stage Processor
Due to the distributed parsing, each pipeline stage processor

now contains three sub-modules: a parser, a matcher, and

an executor. The matcher and executor conduct the similar

match-action function as in PISA.

IPSA pipeline stages are just loosely coupled, and each

stage is individually programmable. By separating primitive

and parameter [27, 29], each processor appears to be a param-

eterized container in which three abstractions are applied: (1)

header fields are abstracted as offset and length; (2) flow tables

are abstracted as type, size, and key; (3) actions are abstracted

as an ordered set of primitives and their parameters. Pro-

gramming a Templated Stage Processor (TSP) simply means

downloading the template configurations, such as header field

indicator, match type, table specification, and action, to it. TSP

is a key mechanism to enable local and independent updates,

allowing us to modify the function of each TSP at runtime.

2.4 Virtual Pipeline
In IPSA, the TSP interconnections are not hardwired. Instead,

a reconfigurable non-blocking interconnection network (e.g.,

crossbar) is used. When including the packet I/O and Traffic

Manager (TM) in the interconnection, we can dynamically

generate arbitrary virtual pipelines in which a TSP can be

allocated to any stage in either ingress or egress, regardless of

its physical location, or excluded from the pipeline if unused,

which can be kept in low power state to reduce heat. As long

as the total number of required pipeline stages is no more than

the number of TSPs, the design can be supported.

I/O TM

TSP5TSP4TSP3TSP2TSP1

Packet In Packet Out

Figure 3: A virtual pipeline example.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 637

We make a trade-off between the latency and scalability by

choosing either a crossbar or a multi-stage network for TSP

interconnection. Virtual pipeline maximizes the flexibility

in constructing a pipeline and simplifies runtime updates.

When needing to insert or remove a TSP in the pipeline, one

just needs to reconfigure the interconnection network. In the

example shown in Fig. 3, TSP1-TSP4-TSP2 forms the ingress

pipeline, TSP5 forms the egress pipeline, and TSP3 remains

in idle. The algorithm for logical stage to TSP mapping, as

part of the compiler, is provided in Sec. 3.3.

2.5 Disaggregated Memory Pool

IPSA disaggregates the memory from TSPs to a shared mem-

ory pool as in dRMT [32]. A crossbar switch fabric is stati-

cally configured for each design to provide interconnection

between TSPs and memory blocks. Updates on either TSPs

or tables may require a reconfiguration of the crossbar. To

cope with the scalability, different optimizations [32] can be

used as a trade-off between flexibility and resource consump-

tion. Specifically, we partition the TSPs and memory blocks

into multiple clusters and each cluster has a crossbar for TSP-

memory interconnection. In each cluster we can also apply

the segment optimization [32] to further improve the scala-

bility. Note that the clustering optimization is inapplicable

to dRMT because its Run-to-Completion (RTC) processors

require table replication in each cluster. The one-to-one map-

ping between processor and table in our architecture frees it

of processor synchronization and crossbar scheduling.

Each SRAM table is mapped to some memory blocks

which are not necessarily adjacent. The TCAM table vir-

tualization technique is similar to that in RMT [20, 32]. The

compiler determines memory allocation for the initial design

and incremental updates. Once deployed, network operators

use the APIs provided by the compiler to access the logical

tables at runtime. If a logical stage is deleted, the memory

blocks for its associated table are recycled.

Disaggregated memory pool allows multiple TSPs to read

or write the same logical table, enabling single-pass stateful
data-plane functions which was difficult or even impossible

to realize in PISA.

3 rP4 Language and Compiler

IPSA makes local function updates possible while keeping

the other incumbent functions and states intact. While IPSA

paves the hardware foundation for in-situ programmability,

software tools adapting to it are needed. The language should

be a high-level one to ease programming, yet a paradigm shift,

i.e., using a modular and stage-oriented design to replace the

monolithic and pipeline-oriented design, is required. Mean-

while, we should try the best to take advantage of existing

assets (e.g., P4) and avoid reinventing the wheel.

3.1 rP4 Language Overview
In IPSA, the packet processing pipeline consists of stages

with each performing some parse-match-action triad. The

incremental parts are inserted into the pipeline as new stages.

To this end, we design a P4 language extension, rP4, dedicated

to programming IPSA-based devices. The reason is multifold:

P4 is familiar and supported by a mature community; we can

reuse most of the existing language features; potentially we

can mix rP4 code to P4 program for co-design optimization.

In rP4, each function contains one or more stages, and each

stage includes a parser, a matcher, and an executor module.

The table information can be extracted from the matcher. The

grammar of rP4 is given in Appendix A.

3.2 rP4 Design Flow
Illustrated in Fig. 4, the rP4 design flow comprises two parts:

the base design and incremental updates upon it.

.p4 P4
front-end

rP4
front-endHLIR .rp4 rP4

back-end

.json

cmd+.rp4

In-situ
programming

Runtime
control

IPSA Control Plane

IPSA Data Plane

Mapper Driver

rP4 Compiler

Figure 4: The complete rP4 design flow.

3.2.1 Flow for Base Design

We use P4 instead of rP4 for the original base design because

P4 code is easier to write and many proven designs in P4

exist. Moreover, a design in P4 can be mapped into both PISA

and IPSA-based devices, albeit the former does not support

runtime incremental updates.

The rP4 front-end compiler, rp4fc, transforms P4 code

into rP4 code. Specifically, rp4fc takes the HLIR, the target-

independent output of p4c, as input, and outputs the semanti-

cally equivalent rP4 code. rp4fc also produces the APIs for

network operators to access the tables at runtime.

To generate the final TSP and table mapping, we develop

an rP4 back-end compiler, rp4bc. It takes rP4 code as input,

analyzes the dependency of different logical stages, optimizes

the predicates to merge some independent stages into a single

TSP, allocates tables, and computes the best stage mapping

layout. The output of rp4bc is the TSP templates in JSON

format, which are used to configure the data-plane devices.

3.2.2 Flow for Incremental Updates

In-situ programming uses rp4bc as well. With the help of the

rP4 base design, users gain insight into the pipeline and decide

638 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the location for updates. To insert a new function, we write the

rP4 code snippet. We then feed the commands, which stipulate

the operation and location, plus the rP4 code to rp4bc. rp4bc
generates two outputs: the first output is the updated base

design as the reference for future updates, and the second

output is the new TSP templates and switch configuration. We

use another command and an rP4 function name as parameters

for function deletion. Similarly, the base design is updated and

new data-plane templates and configurations are generated.

3.3 Algorithms in rP4 Compiler

The rP4 compiler needs to solve two problems: the parser

distribution and the mapping from logical stage to physical

processor.

3.3.1 Parser Distribution and Mapping

A parser is essentially a Finite State Machine (FSM) which

can be represented as a Header Parsing Graph (HPG). Fig. 5(a)

shows an example of HPG in which each node represents a

header. The packet processing flow is partitioned into logical

stages to form a Processing Flow Graph (PFG). Each node in

PFG represents a logical stage which contains a set of headers

needed either for table lookup or packet processing. A PFG

example is shown in Fig. 5(c).

The parser distribution problem is to determine which

header(s), if available, should be parsed at each logical stage

while obeying the just-in-time principle. Obviously, at each

logical stage, a needed header, as well as all its predecessors

in HPG, should be parsed on each path in PFG leading to the

current stage. The parser distribution algorithm determines

the mapping of a minimum sub-graph of HPG to each logical

stage in PFG. We have two cases: the mapping for the base

design and for incremental updates.

1

2 3 4

567

98

10

(a) HPG.

4 c g

6 e f g 5 c g

2 b e f

9 f h

7 b e f

3 a

1 a

8 g h

10 h

f

f ggf

g

(b) Reverse mapping from

header to logical stages.

a
[1, 3]

[2,7][2
b d

[]

h
[8, 9, 10]

e
[2, 6, 7]

[4, 5][4
c

f
[2, 6, 7, 9]

g
[4, 5, 6, 8]

[, ,

]6 7 9]6]
9

9 10]9
10

5 6 8]5
86 7]6

4, 6

[]
2

4 5]4
5

3]
1, 3

2 7]2
7

(c) PFG. Below each node is the resulting dis-

tributed parser states.

Figure 5: Mapping of distributed just-in-time parser.

Base Mapping. We construct a distributed parser for each

logical stage s in the topological order of PFG. At s, for each

reverse path p tracing back to the root of PFG, if a needed

header i in s has been parsed, we extract a sub-graph contain-

ing i and all its predecessors in HPG which have not been

parsed on p. At last, the sub-graphs for all the reverse paths

are merged to generate the distributed parser for s. Fig. 5(c)

shows the final mapping result for each stage if the PFG nodes

is processed in the order of a-b-c-d-e- f -g-h.

To fit the internal pipeline structure of a TSP, the maximum

parsing depth of a distributed parser is limited to a pre-defined

value h. In case the depth H of a resulting parser exceeds h,

the original logical stage is split into �H/h� sub-stages and

the parser is divided into �H/h� sections to fit in them. Only

the last sub logical stage contains the original matcher and

executor. Although mapping to different TSPs, these sub-

stages jointly serve as the original logical stage.

It is trivial to prove that the algorithm can guarantee the just-

in-time parsing. The complexity of the algorithm is O(VH +
EH +VP +EP +Vd), where VH , EH , VP, EP, and Vd represent

the number of vertices and edges in HPG, the number of

vertices and edges in PFG, and the total number of needed

headers by the logical nodes in PFG, respectively.

Incremental Update Mapping. On the basis of HPG and

PFG, we can avoid rebuilding the parser mapping each time

an incremental update occurs, to reduce the compiling time

and update cost. However, both HPG and PFG may change as

a result of the changes on protocol header, logical stage, and

stage transition. To solve the problem, we establish a reverse

mapping from HPG nodes to PFG nodes. Each HPG node i is

associated with a set of logical stages in which the header i is

parsed. The result for our example is shown in Fig. 5(b).

In PFG, the parser change on s does not influence its prede-

cessors. If a removed header i in s may cause another header

j in some predecessor stage s′ to become redundant, it means

j is not needed in s′ in the first place. The just-in-time parsing

makes this case impossible. If a new header i is added to s, s
is solely responsible for parsing all i’s predecessors in HPG

that are not parsed yet on all the paths leading to s in PFG.

Therefore, we have the following procedure for two cases of

HPG change. (1) A header i insertion or deletion in s: find all

the direct successors of i in HPG and get their corresponding

logical stages from the reverse mapping. Update the parsers

in s and these logical stages as well as their successors in

topological order of PFG. (2) A topology change in HPG: get

the corresponding logical stages from the reverse mapping

for all the influenced headers and update the parsers in these

stages and their successors in the topological order of PFG.

During the update, if all the direct predecessors of s′ do not

change their parsers, then s′ does not need to change its parser

either, so the update process can stop earlier.

Similarly, for a change in PFG, we have the following two

cases. (1) A logical stage s insertion or deletion: update the

parsers in all s’s successors in topological order of PFG. (2)

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 639

A topology change in PFG: find all the influenced stages and

their successors, and update the parsers in these stages in

topological order of PFG. Although the time complexity is

the same as the base mapping, in practice the incremental

update mapping is much faster.

3.3.2 Logical-to-physical Topology Mapping

Unlike the logical-to-physical pipeline mapping problem in

PISA [20, 33], the PFG-to-TSP mapping in IPSA faces differ-

ent freedom and constraint due to virtual pipeline and disag-

gregated memory cluster. The high level goal is to minimize

the number of required TSPs and maximize the potential to

support incremental updates.

Assume there are m TSP clusters, C= (C1,C2, ...,Cm), and

each cluster i has n TSPs Pi = (pi,1, pi,2, ..., pi,n) sharing s
SRAM blocks and t TCAM blocks.

Base Mapping. Let P(v) denote the TSP to which the logical

stage represented by node v in PFG is mapped and V (p)
denote the set of independent logical stages mapping to the

TSP p. We model the mapping from PFG to TSP as an ILP

problem with the following constraints and objectives:

Constraint 1: Successor Exclusion. Any two logical stages

cannot be mapped to the same TSP if they are on the same

path in PFG. That is,

P(vi) �= P(v j), i f vi � v j or v j � vi (1)

in which “�" denotes the successor relationship.

Constraint 2: Path Order. The active TSPs form a pipeline

on which the logical stages on the same path in PFG must

follow the pipeline order. That is,

∀ vi,v j ∈V, i f vi � v j ⇒ P(vi) � P(v j) (2)

Constraint 3: TSP Capacity. The number of parallel logical

stages that can be mapped to a single TSP is limited to a

predefined value, K, depending on the TSP resource. That is,

∀ p ∈ P, |V (p)| ≤ K (3)

Constraint 4: Flow Table. The total number of memory

blocks required by the logical stages mapped to the TSPs in a

cluster should not exceed the available resource. That is,

∀ Ci, ∑
1≤ j≤n

s(pi, j)≤ s, ∑
1≤ j≤n

t(pi, j)≤ t (4)

in which s(p) and t(p) denote the number of SRAM and

TCAM blocks required by the TSP p, respectively.

Objective 1: To save more TSPs for future updates, the

number of active TSPs should be minimized by mapping

independent logical stages to the same TSP. Let a(p) be 1 if

p is active and otherwise be 0. The objective is therefore,

min ∑
1≤i≤m,1≤ j≤n

a(pi, j) (5)

Objective 2: The initial mapping should satisfy the proces-

sor and memory requirements with as few clusters as possible,

so as to concentrate the unused resources in some clusters

to make logical stage and table allocation for future updates

easier. Approximately, the objective is expressed as,

max ∑
Ci∈C

m2
i ∑

1≤ j≤n
(

K −ui, j

K
)3 (6)

in which mi is the ratio of free memory blocks in cluster Ci,

and ui, j is the number of used stage resources in pi, j. The

formula favors more free processors.

We use the open-source ILP solver YALMIP [34] to solve

the problem. For the example in Fig. 6(a), the base map-

ping result is shown in Fig. 6(b), and the virtual pipeline is

(a)→(c)→(b,f)→(d,e)→(g)→(h).
Incremental Update Mapping. To make incremental

changes for each runtime update (e.g., insertion or deletion

of a function), we use a greedy mapping algorithm other than

ILP to obtain a local optimal solution, because ILP is not only

slower but also possible to significantly change the mapping

result which requires excessive stage and table migrations.

Greedy Mapping. We maintain a profile for each cluster to

record its free SRAM blocks, TCAM blocks, and the usage

of TSPs (Fig. 6(b)). The logical stage insertion performs the

following steps: first, exclude the clusters without enough

free memory blocks required by the new stage; second, check

whether any processor in the remaining clusters can accom-

modate the new stage under the constraints (1), (2), and (3);

third, in the feasible clusters, choose the one based on the

objective (6). In Fig. 6(a), a new stage i which needs 2 SRAM

blocks is inserted. p3,2 is selected as the greedy mapping

result shown in Fig. 6(c).

3.4 Non-disruptive Update Deployment
After update compiling, the update deployment handles the

device configuration. Since an update may need to insert

or delete multiple logical stages on multiple TSPs, the de-

vice configuration involves multiple tasks: initialize the TSP

templates and logical tables, reconfigure the TSP-memory

crossbar and the virtual pipeline, and modify the transitional

logic of the affected predecessor stages. The update deploy-

ment needs to meet three requirements. (1) Consistency: any

packet in pipeline must be processed either before or after

an update takes effect; (2) Non-disruption: the deployment

process should not cause service interruption or packet drop;

(3) Low latency: the time taken should be minimized.

The deployment procedure we use is named Big Bubble

Update (BBU). BBU can make an update take effect within a

fixed time window at the cost of a small buffer in front of the

processing pipeline. As illustrated in Fig. 7, any update can

be decomposed into a set of three basic operations:

MOD. When needing to modify logical stages in TSP2

(and any other TSPs after TSP2), TSP1 is first stopped from

640 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a
S: 2d*2w

b

c

d

e

f

g
h

S: 3d*2w

T: 1d*2w
S: 1d*3w

T: 2d*1w
S: 2d*3w

S: 2d*2w

T: 4d*1w
S: 4d*1w

S: 3d*3w

S: 1d*4w

TT:
S:

2w2

S:

TT:

2w2
3w

S: S:

SS:

2w2w

1w1
1w

SS:

i
S: 1d*2w

(a) PFG with SRAM (S)/TCAM (T) requirements

for each stage. ‘d’ and ‘w’ denote the depth and

width of a memory block, respectively.

, , , ,

, , , ,
TCAMSRAM

,
a

,
g c d

,
e

b f h

S T , ,
C1 3 4 a g
C2 3 0 c d/e
C3 2 0 b/f h
C4 16 4 - -

Profiles

C1 C2

C3 C4

a gg

h

(b) Base mapping result. There are 4 clusters with each having 2

TSPs, 16 SRAM blocks, and 4 TCAM blocks.

, , , ,

, , , ,

,
a

,
g c d

,
e

b f h

C1 C2

C3 C4
i

(c) The result mapping after insert-

ing stage i.

Figure 6: The base and runtime update mapping from logical stages to physical processors.

moving packets to TSP2 to drain TSP2 in time T . After

that, d more clock cycles are used to configure TSP2. Then

the packet flowing resumes. The other TSPs that need to be

modified will take turn when the created bubble arrives.

DEL. The gateway in a TSP determines in which following

TSP and logical stage a packet should be processed. When

needing to deleting a logical stage s in TSP3, the preceding

TSPs need to modify their gateways if their direct target is s.

INS. It is much easier to insert a new TSP with new logical

stages into the pipeline. There is no need to halt any part

of the pipeline during the d clock cycles used for new TSP

configuration. Both DEL and INS just need one clock cycle

to reconfigure the pipeline interconnection as the last step.

... TSP1 TSP2 TSP3 TSP4

Front Buffer
gatewaybubble

Figure 7: BBU example. When TSP1 is halted, new arrival

packets are accumulated in the front buffer.

BBU guarantees the update consistency (i.e., any packet

cannot be partially processed by an updated function). A

MOD update takes effect after at most (T+d) clock cycles,

and DEL and INS updates take much shorter time, meaning

that an update can be performed as soon as there is enough

space for (T+d) packets in the front buffer. A complex ex-

ample in Fig. 8 shows that multiple updates can be achieved

with one big bubble as well.

4 Implementation and Use Case Demo

To verify the architecture and programming flow, we build

both software and hardware IPSA prototypes, on which sev-

eral use cases are demonstrated.

4.1 IPSA Prototypes
Software Switch: We implement a behavioral model, ipbm,

on Ubuntu 20.04 LTS as a reference software switch con-

TSP5TSP1 TSP2 TSP3 TSP4

TSP5TSP1 TSP2 TSP3 TSP4

2. Modify A with new configuration in TSP3
3. Configure TSP3 gateway: delete B

TSP5TSP1 TSP2 TSP4TSP3
4. Delete configuration of
 function B in TSP4

TSP5TSP1 TSP2 TSP4TSP3
5. Modify A with new
 configuration in TSP5

Front Buffer

1. Stop TSP1, TSP2, and drain TSP3

TSP5TSP1 TSP2 TSP4TSP3

6. Buffer is drained

(a)

(b)

(c)

(d)

(e)

Figure 8: Function A resides in TSP3 and TSP5; Function B

resides in TSP4. To modify A and delete B, the updates are

performed in order when the target TSP is in the big bubble.

forming to IPSA. ipbm takes 8,361 lines of C++ code. ipbm
consists of four modules: the Communication Module (CM)

supports OS kernel bypass and direct packet I/O; the Pipeline

Module (PM) simulates the TSPs; the Control Channel Mod-

ule (CCM) communicates with the controller for runtime

configuration; the Storage Module (SM) realizes the disag-

gregated memory pool.

Hardware Switch: We build a hardware prototype on a Xil-

inx Alveo U280 accelerator card. The Xilinx 16nm Ultra-

Scale+ FPGA contains 8GB of HBM2 memory with 460G/s

bandwidth [35]. We implement both IPSA (2,366 lines of

Scala code) and PISA (1,942 lines). Each prototype contains

12 physical processors (K=2). The TM is omitted for sim-

plicity. Each IPSA TSP supports a 192-byte packet window,

64-byte metadata, and a 4-level pipelined parser. The TSPs

are partitioned into 3 clusters, each with 64 256×64b memory

blocks. The maximum bus-width for memory access is lim-

ited to 256-bit (i.e., four memory ports) for both prototypes.

Each executor contains four primitives which are sufficient

to our use cases. We implement both memory blocks and

virtual pipeline interconnections with a 12×12 full crossbar.

The PISA prototype realizes a 256-byte PHV which com-

prises 32x 8-bit, 48x 16-bit, and 32x 32-bit containers. Each

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 641

B: domain_bind

A: port_map

C: routable

D: ipv4_host E: ipv6_host

F: ipv4_lpm G: ipv6_lpm

H: nexthop

J: dmacI: smac

C3 LegendBase C1 C2
inserted path

L ecmp

M srv6_end

N srv6_transit

P sIP_probe

Q dIPPort_probe

K: port_retrieve

K

J

I

H

F G

D E

C

B

A

K

J

I

F G

D E

C

B

A

L

M

N

K

J

I

F G

D E

C

B

A

H

P Q

K

J

I

H

F G

D E

C

B

A

G

EDD E

GGGFFFF

IIII

L

M

CC

G

EE

FFFF

HHHH

hit path
miss path

Figure 9: The packet processing flow and TSP pipeline mapping for the use cases.

processor in PISA can access 16 memory blocks.

Compiler and Controller: rp4c is implemented with 3,772

lines of C++ code. The controller is used for runtime con-

figuration and in-situ programming. We implement a simple

command-line interface in C++, allowing users to load or

offload on-demand protocols and functions at runtime.

4.2 Base Design Compiling Results
We compile several open source P4 projects [17, 36–39] for

ipbm and bmv2. Table. 1 shows the number of logical stages

(LS) and the number of logical pipeline levels (LPL) on ipbm.

bmv2 produces the same LPL results. The table also shows

the average depth of the distributed parsers (ADP) and the

percentage of the distributed parsers whose depth is under 5

(U5), confirming 4 is a good trade-off for the supported parser

depth in a TSP.

LS LPL ADP U5 (%)

switch.p4 [36] 130 31 0.28 100

DC.p4 [37] 38 19 0.45 97.37

ONTAS [38] 22 8 0.36 100

P4SRv6 [39] 17 5 0.53 100

NetCache [17] 96 14 0.21 100

Table 1: Design compiling results.

4.3 In-situ Programming Use Cases
To fit in our hardware prototype, the base design, as shown

in Fig. 9, is extracted from switch.p4, which includes L2

switching with IP subnet-based VLAN and L3 forwarding

based on IPv4/IPv6. The workflow is as follows: (1) get in-

terface index via port mapping table (A), (2) bind the Bridge

Domain (BD) and the Virtual Routing Forwarding (VRF) ta-

ble (B), (3) determine L2 or L3 forwarding (C), (4) derive

the egress interface index via BD and dMAC (J), (5) process

IPv4/v6 header and get the next-hop (D, E, F, G), (6) update

BD and dMAC via nexthop (H), (7) update sMAC via updated BD
(I), (8) get the egress port via egress interface index (K). As

shown in Fig. 9, the resulting PFG contains 11 logical stages

mapping to 9 TSPs. To showcase the in-situ programming

capability, we select three representative applications which

introduce new functions or protocols to the switch at runtime.

C1: Equal-Cost Multi-Path Routing (ECMP). While there

are multiple network load balancing algorithms, we choose

ECMP [40, 41] as an example to augment the base design.

After the FIB lookup, the function chooses a forwarding link

based on the next-hop and flow ID hashing. ECMP does not

introduce new protocols, but two new tables and process-

ing logic. The rP4 code for the ECMP function is shown in

Fig. 10(a). ECMP applies for both IPv4 and IPv6. Since they

are independent, only one physical stage is needed. The func-

tion also covers and therefore replaces the stage H. To insert

the ECMP function into the original switch, we first com-

pile the function code and the associate configuration script

(Fig. 10(b)) into template parameters and required topology

modifications, and then apply the configurations on the de-

vice. In this case, users need to link IPv4 forwarding and

IPv6 forwarding with ecmp. The links from and to the origi-

nal nexthop are removed through ‘delete_link’ command to

eliminate the old function from the pipeline.

C2: IPv6 Segment Routing (SRv6). SRv6 [42] is an IPv6-

based source routing protocol. It uses a new IPv6 extension

header (i.e., SRH) to carry the forwarding path information [6,

43]. The SRv6 function has two sequential logical stages,

srv6_end and srv6_transit, for SR end-point and transit-

node processing, respectively. A packet first goes through the

srv6_end stage. If the packet’s SID matches the local SIDs of

the switch, the end-point function is executed; otherwise, the

transit-node function in the srv6_transit stage is executed,

which could insert an SRH to the packet or simply forward the

packet. In this case, the script for loading the function needs

to link the new header into the original header list (Fig. 10(c)).

Since the switch should still support pure L3 forwarding,

the linkage between routable and ipvx is reserved. After

rp4bc compiling and configuration downloading, the target

is renewed with SRv6 support.

C3: Dynamic Flow Probe. To realize dynamic network mea-

surement [11, 14], we insert an event-triggered probe at run-

time and later the probe can be updated to change the object

642 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

/***** table definition: ecmp_ipv4, ecmp_ipv6 *****/

ffield_list ecmp_v4 {ipv4.src_addr; ipv4.dst_addr; ipv4.ip_proto}

 // action profile definition same as P4

table ecmp_ipv4 {

key = { meta.nexthop: exact; }

action_profile: ecmp_v4_profile; // do hash on ecmp_v4

size = 256;

}

table ecmp_ipv6 { } // similar with ecmp_ipv4

/***** stage/function definition: ecmp function *****/

stage ecmp { // parser => matcher => executor

parser { ipv4, ipv6 }; // define headers ecmp needs

matcher {

if(ipv4.isValid()) ecmp_ipv4.apply();

else if(ipv6.isValid()) ecmp_ipv6.apply();

else;

};

executor { // execute actions according to matching result

1: set_bd_dmac;

default: NoAction;

}

}

/***** action definition: set egress bridge and dmac *****/

action set_bd_dmac(bit<16> bd, bit<48> dmac) {

meta.routed = true; // table hit, the packet can be routed

meta.bd = bd;

ethernet.dst_addr = dmac;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(a) The rP4 code for the ECMP function.

lload ecmp.rp4 --func_name ecmp

del_link ipv4_host nexthop

del_link ipv4_lpm nexthop

add_link ipv4_host ecmp

add_link ipv4_lpm ecmp

del_link nexthop smac

add_link ecmp smac

 // omit IPv6 topology change similar with IPv4

1

2

3

4

5

6

7

8

(b) The script for loading ECMP to rp4bc.

lload srv6.rp4 --func_name srv6

 // omit stage topology change

link_header --pre IPv6 --next SRH --tag 43

link_header --pre SRH --next IPv6 --tag 41 // inner IPv6

link_header --pre SRH --next IPv4 --tag 4 // inner IPv4

1

2

3

4

5

(c) The script for loading SRv6 to rp4bc.

Figure 10: Code and script for runtime programming.

and trigger criteria. Specifically, we implement a heavy hitter

detector based on SIP. Once a flow’s traffic exceeds a thresh-

old, the probe is triggered and user can apply pre-defined ACL

or QoS rules to the flow. After a while, we switch the monitor-

ing focus by using {DIP, DPORT} as the key, which requires

policy update and table refactoring. The TSP mapping result

is shown in Fig. 9. Since the probe works for IPv4, a link

from IPv4 forwarding to the probe is added.

Due to space limitations, we omit the case for func-

tion/protocol removal, which is usually simpler than insertion.

5 Evaluation

First, we study the hardware cost for IPSA-based chips based

on the FPGA prototype, theory analysis, and empirical ev-

idence from previous study [20, 32]. Second, we conduct

experiments on the prototypes for IPSA and PISA using the

aforementioned use cases to examine the performance such

as forwarding throughput and latency, compiling time and

configuration time for incremental updates, and power con-

sumption. Due to the lack of real ASIC implementations, for

some aspects, we can only gain the relative performance by

comparing the IPSA and PISA prototypes.

5.1 Hardware Cost Analysis
We first analyze the cost of each key component and then

provide an overall evaluation.

TSP. Table. 2 compares the FPGA resource (LUT and FF)

consumption for a processor and shows that an IPSA TSP

consumes 0.581% fewer LUTs and 0.847% more FFs than a

PISA processor. The higher register consumption of IPSA is

due to the need for template parameter storage.

Unit LUT (%) FF (%)

PISA IPSA PISA IPSA
Parser - 1.256% - 0.684%

Matcher
4.131%

0.697%
0.295%

0.243%

Executor 1.597% 0.215%

Total 4.131% 3.550% 0.295% 1.142%

Table 2: Processor resource in FPGA prototypes.

Interconnection network for virtual pipeline. The number

of TSPs determines the scale of the interconnection network.

Different types of interconnection networks have different

scalability and latency trade-offs. For N TSPs, we consider

four types of non-blocking networks, i.e., Crossbar, Clos [44],

Benes [45], and Batcher Banyan (BB) [46–48], which have

characteristics in Table. 3.

Type Cross-points Latency (cycles)
Crossbar N2 1

Clos 2Nc+N2/c 3

Benes 4(Nlog2N −N/2) 2log2N −1

BB Nlog2
2N log2N(1+ log2N)/2

Table 3: Cross-point comparison. c is the number of sub-

switches in the second stage of Clos.

Clos is a good compromise between resource and latency.

It is easy to derive that when c =
√

N/2, the minimum num-

ber of cross-points is achieved. For 32 TSPs, Clos can save

50% cross-points of Crossbar when c = 4. The network is

composed of sixteen 4×4 crossbars and four 8×8 crossbars.

Comparing to the internal latency of a TSP (21 ∼ 29 clock

cycles), the Clos network only adds three more cycles per

stage. Based on the same assumption as in dRMT [32] (e.g.,

200mm2 die size on 28nm technology for the entire chip), for

an ASIC implementation, the die size of the Clos with 4Kb

data bus width would be about 4.173mm2.

IPSA prototype implements a 12×12 crossbar for TSP

interconnection. The data bus comprises 192-byte headers, 64-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 643

byte metadata, 32-byte extracted information, 4-byte parsing

states, and 6-bit configuration information (2,090 bits in total).

The crossbar consumes 17.48% LUTs and 1.02% FFs of

the FPGA, which account for 27.93% LUTs and 6.92% FFs

consumed by all the TSPs, respectively.

Crossbar between TSPs and memory. Crossbar is used for

memory access mainly due to the latency concern. dRMT uses

a one-to-many segment crossbar to trade off the flexibility for

scalability [32]. Equivalent to the configuration of RMT [20],

it has 32 collections of memory blocks and 32 processors

with each owning eight 80-bit memory access ports. Each

matching key of a processor connects to a port in each memory

collection, so the number of cross-points is 32×8×32 = 213.

For IPSA, if we partition the 32 TSPs and memory collec-

tions into 8 clusters, and allow each TSP to connect to all ports

in a memory collection, the number of cross-points would

be 4×8× (8×4)×8 = 213 as well. As a generalization, if

we have M TSPs and M memory collections which are parti-

tioned into m clusters, and each TSP connects to k memory

ports, the number of cross-points is M2k2/m. When M = 32

and k = 8, by varying m, we get results in Table. 4, in which

the flexibility indicates the number of memory collections

each TSP can access.

Type m Cross-points Flexibility

IPSA

2 215 16

4 214 8

8 213 4

16 212 2

dRMT 1 213 4

Table 4: Crossbar cross-point and flexibility comparison.

IPSA offers a wide design space for crossbar configuration.

Higher memory flexibility (e.g., the capability to support large

tables and the freedom for table mappings) can be gained with

larger crossbar area. The crossbar in dRMT can be considered

as a special case for IPSA. However, due to the lack of clus-

tering, each of dRMT’s processors needs to reach all the 32

memory collections, which increases the chip wiring latency

and complexity. In contrast, to achieve the same number of

cross-points, IPSA allows 8 clusters, and each TSP only needs

to reach four memory collections.

Our IPSA prototype splits 12 processors into 3 clusters,

resulting in 768 cross-points. The crossbar consumes 3.08%

LUTs and 0.01% FFs of the FPGA, which account for 4.92%

LUTs and 0.07% FFs of the IPSA prototype, respectively.

Similarly, for an ASIC implementation with 32 TSPs, 8 clus-

ters, eight 80-bit matching width, and return data containing

eight 10-bit action pointers and 96-bit action data segments,

the chip area of the crossbar is about 1.728mm2, similar to

the result of dRMT.

Put everything together. The consumption of SRAM and

TCAM is the same for IPSA and PISA, so the comparison

is omitted. Front parser and deparser are unique for PISA.

The overall comparison of the two prototypes is shown in

Table. 5. The IPSA prototype consumes 12.09% more LUTs

and 9.69% more FFs than the PISA prototype.

Protoype PISA IPSA
Resource LUT FF LUT FF

Parsers/Deparsers 0.94% 1.54% - -

Processors 49.55% 3.52% 42.02% 13.72%

Crossbar - - 3.08% 0.01%

Inter-Network - - 17.48% 1.02%

Total 50.49% 5.06% 62.58% 14.75%

Table 5: FPGA resource for PISA and IPSA prototypes.

5.2 Experiment Settings

IPSA/PISA
Prototype

Traffic
Generator

Switch Server

NIC port 2

NIC port 1

Controller
Server

Traffic Path
Configuration Path

Figure 11: Testbed configuration.

Testbed. As shown in Fig. 11, the testbed is composed of

the FPGA-based switch prototype, a server as the controller

for switch configuration and control, a Spirent SPT-N4U-220

traffic generator [49] to generate test traffic, a server equipped

with a Mellanox ConnectX-5 dual-port 100G NIC, and an

Edgecore Wedge100BF-32X [50] switch to connect the de-

vices. The FPGA has two 100Gbps QSFP28 Ethernet ports

for data path traffic and one PCIe 4.0 interface supporting

up to 16GT/s to the controller server. The Spirent SPT-N4U

can generate up to 400Gbps packet trace with the accuracy

of 10ns per frame. The traffic generator sends packets to the

server through the FPGA. Because the FPGA has only one

egress port, the Edgecore switch is used to split the traffic to

the two NIC ports in order to demonstrate the ECMP func-

tion.The Edgecore switch is also programmed to timestamp

the packets to and from the FPGA for latency measurement.

Packet Trace. Based on the use cases in Sec. 4.3, three types

of packets shown in Table 6 are generated to test the proto-

types. All the packets are 192-byte long with different num-

bers of padding bytes as payload. Each type of packet amounts

to one third of the generated traffic.

5.3 Performance Evaluation
5.3.1 Switch Throughput and Latency

Throughput. With Vivado Design Suite [51], the synthesized

clock frequency for IPSA is 110.45MHz and for PISA is

644 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Header format Header length (bytes)

Ethernet-VLAN-IPv4-UDP 46

Ethernet-VLAN-IPv6-UDP 66

Ethernet-VLAN-IPv6-SRv6-UDP 112

Table 6: Test packet types.

153.30MHz. The lower clock frequency for IPSA is due to

the wiring complexity of the interconnection networks, which

can be improved by the ASIC implementation. Benefited

from the full pipelined design, theoretically, the IPSA and

PISA prototypes can support a throughput of 169.65Gbps

and 235.47Gbps, respectively. However, because the FPGA

only has a 100Gbps interface, the peak throughput of the two

prototypes is limited to 100Gbps.

Latency. We measure the forwarding pipeline latency based

on the ingress and egress timestamps on packets. The results

are shown in Fig. 12(a). The longer latency of the IPSA proto-

type is due to field and flow table profile fetching, match key

assembly, and primitive loading. The gap can be mitigated

and even reversed if the number of processors is large and the

number of active processors is relatively small.

Base C1 C2 C3
0.0

0.4

0.8

1.2

1.6

2.0

2.4

Pi
pe

lin
e

La
te

nc
y

(
s)

Use Cases

IPSA PISA

(a) Forwarding latency.

B +C1C1 -C1 B +C2C2 -C2 B +C3C3 -C3 B
0.0

0.4

0.8

1.2

1.6

2.0

2.4 B: Base +: insert -: delete

A
ve

ra
ge

La
te

nc
y

(
s)

Updating Actions

(b) IPSA average pipeline latency.

Figure 12: Pipeline forwarding latency.

5.3.2 Incremental Update Deployment Delay

In addition to the rP4 design flow, we also implement the

use cases in P4 design flow for comparison. Each time the

updated source code is compiled by p4c and a PISA-based

back-end compiler, and the FPGA prototype is loaded with

the updated design.

The update process of PISA consists of two phases: com-

piling the updated code and reflashing the device. The latter

causes pipeline interruption. In contrast, IPSA decomposes

the second phase into two parts: configuration loading and

update executing. Only the second part halts the pipeline. We

use tC, tL and tH to denote code compiling time, configura-

tion loading time, and pipeline halting time, respectively. The

update performance of PISA and IPSA is shown in Fig. 13.

Similar comparison between bmv2 [52] and ipbm is also in-

cluded in terms of compiling time and halting time.

As shown in Fig. 13(a), since IPSA only compiles the up-

dated code segment, it takes much shorter time than PISA.

Fig. 13(b) shows that tL of IPSA is much shorter than tC.

Fig. 13(c) exhibits that IPSA’s pipeline halting time is only

C1 C2 C3
10-1

100

101

102

103

104

105

C
om

pi
lin

g
Ti

m
e

(
s)

Use Cases

IPSA PISA ipbm bmv2

(a) Compiling time tC .

C1 C2 C3
10-3

10-2

10-1

Lo
ad

in
g

Ti
m

e
(

s)

Use Cases

IPSA

(b) Loading time tL of IPSA.

C1 C2 C3
10-3
10-2
10-1
100
101
102
103
104
105
106

H
al

tin
g

Ti
m

e
(

s)

Use Cases

IPSA PISA ipbm bmv2

(c) Pipeline halting time tH .

C1 C2 C3
10-1

100

101

102

103

104

105

106

O
ve

ra
ll

Ti
m

e
(

s)

Use Cases

IPSA PISA ipbm bmv2

(d) Overall update time.

Figure 13: Update performance.

0.34% of PISA’s, allowing a small front buffer of 22 packets.

Fig. 13(d) sums tC, tL, and tH as the overall update time, show-

ing that IPSA has much better update performance than PISA.

The time comparisons between ipbm and bmv2 in Fig. 13 lead

to the same conclusion.

Fig. 12(b) shows the average pipeline latency before, dur-

ing, and after each update in IPSA. C1, C2, and C3 are inserted

and removed sequentially. While no packet drop is observed,

the latency fluctuation is also small, revealing that the update

deployment process of IPSA has negligible impact on packet

forwarding. In contrast, any update in PISA needs to take

the device offline and repopulate the tables, incurring longer

latency and higher impact on packet forwarding.

5.3.3 Power Consumption

As a side benefit, the virtual pipeline in IPSA helps reduce the

chip power consumption. We extend the number of processors

to 32 and infer the power consumption of IPSA and PISA

with different number of active processors using the Vivado

Design Suite. We assume that the unused TSPs in IPSA are

put in idle state while all the processors in PISA are active

in the pipeline. As shown in Fig. 14, IPSA consumes less

power when the number of active processors is smaller than

18. Since the extra interconnection networks in IPSA are both

passively configured, we expect the ASIC implementation

can achieve even better power efficiency.

6 Discussion and Future Work

Whenever possible we try to reuse the fruition of P4 and PISA

in our design unless the issue is unique to our architecture.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 645

0 4 8 12 16 20 24 28 32
10

20

30

40

50

60

70

80

90

Po
w

er
C

on
su

m
pt

io
n

(W
)

Number of Active Processors

IPSA PISA

Figure 14: Power consumption in terms of active processors.

Numerous design details omitted due to space limit in this

paper are documented on the open source website.

In addition to the concurrency-based processor reduc-

tion [33], the resource mapping algorithm for updates can

also be enhanced. To accommodate a new stage with memory

requirement exceeding the free memory in any cluster, it is

possible to relocate some existing stages to different clusters

or split the new stage into multiple clusters.

The resource penalty for supporting IPSA can be offset by

its unique properties and compensated by newer chip tech-

nologies: (1) A typical forwarding chip is usually built with

multiple parallel pipelines. While PISA requires table repli-

cations in each pipeline, which reduces the effective memory

resource, IPSA allows multiple pipelines to share a single

copy of each table if multi-port memory blocks are provided.

(2) In PISA, a big flow table requires combining multiple

physical processors, reducing the effective pipeline stages. In

IPSA, a logical stage can always map into a single TSP as

long as its memory requirement can be satisfied by a cluster.

(3) Since only active TSPs are kept in the pipeline in IPSA,

the pipeline latency can be reduced, which offsets the extra

latency introduced by the interconnection networks. (4) In

IPSA, the statically configured interconnections for virtual

pipeline and memory are more power-efficient than the dy-

namic switching network in dRMT. (5) The disaggregated

architecture of IPSA also allows homogeneous components to

be built on separate silicon chips and integrated with the 3D-

IC technology [53–55], effectively expanding the available

resource and reducing the memory access latency. It is con-

ceivable to have a three layer chip architecture composed of

processor, interconnection fabric, and memory. The detailed

chip design and evaluation will be attended as future work.

The interconnection network allows the processors to be

organized into a directed graph instead of a pipeline, which

brings new design possibilities and challenges for parallel

processing, deserving further research. On the other hand,

while the full interconnection is resource intensive, we can

explore the design space leaning to better resource efficiency

but less flexibility as a trade-off (e.g., partial interconnection,

blocking network, or bypassable pipeline stages).

It is also interesting to explore the possibility to automate

the rP4 code generation by comparing the difference between

the old and updated P4 programs. A GUI-based development

environment would help visualize the pipeline and ease the

programming process.

7 Related Work

dRMT [32] also decouples processors and memory, demon-

strating the feasibility of resource pooling and crossbar-based

interconnection; however, the RTC mode of processors ex-

cludes the possibility of incremental updates. POF [56] allows

runtime table and function insertion into data-plane devices,

but only applies on software-reprogrammable network proces-

sors rather than ASIC. IPSA adopts the similar approach as in

POF to support distributed parsing. Some software switches

(e.g., VPP [57]) support runtime updates as well but the tech-

niques cannot be ported to hardware. daPIPE [58] allows

users to integrate custom functions into the preexisting data-

plane program, but still requires recompiling the integrated

program. Mantis [59] supports predefined malleable values,

fields, and tables whose semantics can be changed during run-

time for reactive programming. While this is a step towards

runtime behavior changing, the flexibility is limited and fine-

grained, and the behavior must be predefined at design time.

Hyper4 [9] virtualizes the data plane to adapt to various for-

warding applications. Newton [29] supports a query template

for dynamic telemetry, which is hard to extend. Some other

works [8,27,60] virtualize network functions and match tables,

but cannot support runtime data-plane programming. Limited

to FPGA, Partial Reconfiguration (PR) [61] allows users to

reconfigure pre-allocated regions at runtime. However, the

performance and scalability issues make FPGA unsuitable for

core switching chip, and the flexibility and deployment delay

of PR still cannot match that of IPSA. Designed for smart

NIC, PANIC [62] also uses a switching fabric for flexible

compute unit interconnection, but a scheduler is needed to

schedule the service chain for each packet.

8 Conclusion

IPSA and rP4 open a new design space for network pro-

grammability, enabling new applications in the era of au-

tonomous networks. Our implementation and evaluation have

demonstrated the feasibility and benefits of the new chip ar-

chitecture and programming model. We open source the rP4

specification and compiler along with ipbm, with the expecta-

tion that our work can inspire a new breed of switch ASICs,

engage the community to advance the language support, and

help gestate novel in-situ programmable applications.

Acknowledgement. We thank the anonymous reviewers and

our shepherd Manya Ghobadi for their insightful comments

and suggestions which help improve this paper. The authors

from Tsinghua University are supported by NSFC (62032013,

61872213, 61432009) and NSFC-RGC (62061160489). Bin

Liu (liub@tsinghua.edu.cn) is the corresponding author.

646 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] BCM56960 Series. https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56960-series.

[2] Innovium TERALYNX. https://www.innovium.
com/teralynx.

[3] Intel Tofino 2. https://ark.intel.com/
content/www/us/en/ark/products/210608/
intel-tofino-2.html.

[4] NVIDIA Mellanox SPECTRUM-2. https:
//www.mellanox.com/files/doc-2020/
pb-spectrum-2.pdf.

[5] Trident3-X7 / BCM56870 series. https://www.
broadcom.cn/products/ethernet-connectivity/
switching/strataxgs/bcm56870-series.

[6] Clarence Filsfils, Darren Dukes, Stefano Previdi, John

Leddy, Satoru Matsushima, and Daniel Voyer. IPv6

Segment Routing Header (SRH). RFC 8754, March

2020.

[7] In-band Network Telemetry (INT) Dataplane

Specification. https://github.com/p4lang/
p4-applications/blob/master/docs/INT_v2_1.
pdf.

[8] Peng Zheng, Theophilus Benson, and Chengchen Hu.

P4visor: Lightweight virtualization and composition

primitives for building and testing modular programs.

In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies,

pages 98–111, 2018.

[9] David Hancock and Jacobus Van der Merwe. Hyper4:

Using p4 to virtualize the programmable data plane. In

Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies,

pages 35–49, 2016.

[10] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi

Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575, 2018.

[11] M. Moshref, Minlan Yu, R. Govindan, and Amin Vahdat.

DREAM: Dynamic Resource Allocation for Software-

Defined Measurement. In SIGCOMM, 2014.

[12] Masoud Moshref, Minlan Yu, Ramesh Govindan, and

Amin Vahdat. SCREAM: Sketch Resource Allocation

for Software-Defined Measurement. In Proceedings

of the 11th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT), 2015.

[13] S. Narayana, Anirudh Sivaraman, V. Nathan, Prateesh

Goyal, V. Arun, M. Alizadeh, V. Jeyakumar, and

Changhoon Kim. Language-Directed Hardware De-

sign for Network Performance Monitoring. Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2017.

[14] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford,

and David Walker. Compiling Path Queries. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), 2016.

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In ACM
SIGCOMM, 2018.

[16] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapa-

tra. ProgME: Towards Programmable Network MEa-

surement. IEEE/ACM Transactions on Networking,

19(1):115–128, 2011.

[17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,

Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion

Stoica. Netcache: Balancing key-value stores with fast

in-network caching. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles, Shanghai,
China, 2017.

[18] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,

Marco Canini, and Panos Kalnis. In-network compu-

tation is a dumb idea whose time has come. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in
Networks (HotNets), 2017.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,

Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion

Stoica. Netchain: Scale-free sub-rtt coordination. In

Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI),
2018.

[20] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-

ese, Nick McKeown, Martin Izzard, Fernando Mujica,

and Mark Horowitz. Forwarding Metamorphosis: Fast

Programmable Match-Action Processing in Hardware

for SDN. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013.

[21] N McKeown. Protocol-independent switch architecture

(PISA). https://forum.stanford.edu/events/
2016/slides/plenary/Nick.pdf.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 647

[22] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick

McKeown, Jennifer Rexford, Cole Schlesinger, Dan

Talayco, Amin Vahdat, George Varghese, et al. P4:

Programming Protocol-Independent Packet Processors.

ACM SIGCOMM Computer Communication Review,

44(3):87–95, 2014.

[23] Zhaoqi Xiong and Noa Zilberman. Do switches dream

of machine learning? toward in-network classification.

In Proceedings of the 18th ACM workshop on hot topics
in networks, pages 25–33, 2019.

[24] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi

Chen, Wenfei Wu, Aditya Akella, and Michael M Swift.

ATP: In-network aggregation for multi-tenant learning.

In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), 2021.

[25] Tian Pan, Enge Song, Zizheng Bian, Xingchen Lin, Xi-

aoyu Peng, Jiao Zhang, Tao Huang, Bin Liu, and Yunjie

Liu. INT-Path: Towards Optimal Path Planning for In-

Band Network-wide Telemetry. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications,

pages 487–495. IEEE, 2019.

[26] Johannes Krude, Jaco Hofmann, Matthias Eichholz,

Klaus Wehrle, Andreas Koch, and Mira Mezini. On-

line reprogrammable multi tenant switches. In Proceed-
ings of the 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms, pages 1–8, 2019.

[27] László Molnár, Gergely Pongrácz, Gábor Enyedi,

Zoltán Lajos Kis, Levente Csikor, Ferenc Juhász, At-

tila Kőrösi, and Gábor Rétvári. Dataplane specialization

for high-performance openflow software switching. In

Proceedings of the ACM SIGCOMM Conference, 2016.

[28] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and

Jianping Wu. HyperV: A High Performance Hypervi-

sor for Virtualization of the Programmable Data Plane.

In 2017 26th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2017.

[29] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao,

Yangyang Wang, Mingwei Xu, and Jianping Wu. New-

ton: Intent-Driven Network Traffic Monitoring. In

Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), 2020.

[30] In-situ Programmable Behavioral Model. https://
github.com/jijinfanhua/IPSA-ipbm.

[31] Yong Feng, Haoyu Song, Jiahao Li, Zhikang Chen, Wen-

quan Xu, and Bin Liu. In-situ programmable switching

using rp4: Towards runtime data plane programmability.

In Proceedings of the Twentieth ACM Workshop on Hot
Topics in Networks, pages 69–76, 2021.

[32] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-

man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-

hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,

et al. dRMT: Disaggregated Programmable Switching.

In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
pages 1–14, 2017.

[33] Lavanya Jose, Lisa Yan, George Varghese, and Nick

McKeown. Compiling packet programs to reconfig-

urable switches. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15),
pages 103–115, 2015.

[34] J. Löfberg. YALMIP : A toolbox for modeling and

optimization in MATLAB. In In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

[35] Xilinx. Alveo U280 Data Center Accelera-

tor Card. https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[36] switch.p4. https://github.com/p4lang/switch/
tree/master/p4src.

[37] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krish-

namoorthy, Advait Dixit, and Mihai Budiu. Dc. p4: Pro-

gramming the forwarding plane of a data-center switch.

In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, pages 1–8,

2015.

[38] Hyojoon Kim and Arpit Gupta. ONTAS: Flexible and

Scalable Online Network Traffic Anonymization Sys-

tem. In Proceedings of the 2019 Workshop on Network
Meets AI & ML, pages 15–21, 2019.

[39] P4SRv6. https://github.com/ebiken/p4srv6.

[40] Jaeyoung Kim and Byungjun Ahn. Next-hop Selection

Algorithm over ECMP. In 2006 Asia-Pacific Conference
on Communications, pages 1–5. IEEE, 2006.

[41] Sumet Prabhavat, Hiroki Nishiyama, Nirwan Ansari, and

Nei Kato. On load distribution over multipath networks.

IEEE Communications Surveys & Tutorials, 14(3):662–

680, 2011.

[42] Cisco. Segment Routing over IPv6 dataplane.

https://www.segment-routing.net/tutorials/
2017-12-05-srv6-introduction/.

[43] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno

Decraene, Stephane Litkowski, and Rob Shakir. Seg-

ment Routing Architecture. RFC 8402, July 2018.

[44] Charles Clos. A study of non-blocking switching net-

works. Bell System Technical Journal, 32(2):406–424,

1953.

648 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[45] Václav E Beneš. On rearrangeable three-stage con-

necting networks. The Bell System Technical Journal,
41(5):1481–1492, 1962.

[46] Madihally J Narasimha. The batcher-banyan self-

routing network: universality and simplification. IEEE
Transactions on Communications, 36(10):1175–1178,

1988.

[47] LR Gokr and GJ Lipovski. Banyan networks for parti-

tioning multiprocessing systems. In Proc. First Annual
Computer Architecture Conference, pages 21–28, 1973.

[48] Kenneth E Batcher. Sorting networks and their appli-

cations. In Proceedings of the April 30–May 2, 1968,
spring joint computer conference, pages 307–314, 1968.

[49] Spirent. Spirent spt-n4u compact chassis.

https://www.spirent.com/assets/spirent_
n4u_chassis_datasheet.

[50] Edgecore. Wedge 100bf-32x. https:
//www.edge-core.com/productsInfo.php?cls=1&
cls2=5&cls3=181&id=335.

[51] Xilinx Vivado Design Suite. https://www.xilinx.
com/products/design-tools/vivado.html.

[52] Behavioral Model of PISA (bmv2). https://github.
com/p4lang/behavioral-model.

[53] Kun Cao, Junlong Zhou, Tongquan Wei, Mingsong

Chen, Shiyan Hu, and Keqin Li. A survey of optimiza-

tion techniques for thermal-aware 3d processors. Jour-
nal of Systems Architecture, 97, 2019.

[54] Wen-Wei Shen and Kuan-Neng Chen. Three-

dimensional integrated circuit (3d ic) key technology:

through-silicon via (tsv). Nanoscale research letters,

12(1):1–9, 2017.

[55] Xilinx. 3D ICs. https://www.xilinx.com/
products/silicon-devices/3dic.html.

[56] Haoyu Song. Protocol-oblivious forwarding: Unleash

the power of sdn through a future-proof forwarding

plane. In Proceedings of the second ACM SIGCOMM
workshop on HotSDN, 2013.

[57] Vector Packet Processing Platform. https://fd.io/
vppproject/vpptech.

[58] M. Baldi. daPIPE: a Data Plane Incremental Program-

ming Environment. In 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications
Systems (ANCS), pages 1–6, 2019.

[59] Liangcheng Yu, John Sonchack, and Vincent Liu. Man-

tis: Reactive Programmable Switches. In ACM SIG-
COMM, 2020.

[60] Teemu Koponen, Keith Amidon, Peter Balland, Martín

Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,

Jesse Gross, Paul Ingram, Ethan Jackson, et al. Net-

work virtualization in multi-tenant datacenters. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 203–216, 2014.

[61] J.D. Hadley and B.L. Hutchings. Design Methodologies

for Partially Reconfigured Systems. In Proceedings
IEEE Symposium on FPGAs for Custom Computing
Machines, 1995.

[62] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh

Sivaraman, and Aditya Akella. PANIC: A High-

Performance programmable NIC for multi-tenant net-

works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), 2020.

A rP4 Grammar

The rP4 grammar in Extended Backus-Naur Form (EBNF) is

shown in Fig. 15, in which the non-terminals mutual to P4

are omitted.

{ }

{ }

{ }

{ }

[]

{ }

{

{ }

{ }

{ }

{ }

{ }

Figure 15: rP4 EBNF.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 649

