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1  INTRODUCTION 
The dream of experimental fluid dynamicists is to be able to measure complex, three-dimensional turbulent 

flow fields globally with very high spatial and temporal resolution. While we are still far from fully realizing this 
dream, significant progress has been made towards this goal during the last two decades.  Early quantitative 
measurement methods using Pitot tubes, Venturi tubes and later measurement methods, such as Hot Wire 
Anemometry (HWA) and Laser-Doppler Anemometry (LDA), by their nature, were measurement methods that 
provided instantaneous velocity signals at single-points through time (see Figure 1).  As can be seen from typical 
data such as those shown in Figure 1a, early emphasis in turbulence research and its theoretical advancement 
necessitated a statistical description of turbulent flow fields, which relied heavily upon measurements provided by 
these single-point measurement techniques.  Though useful, these statistical single point descriptions could not give 
us a clear instantaneous picture of what the fluid was doing globally, and how its instantaneous physics ultimately 
result in the fluid’s statistical behavior. 

 

 

 

Figure 1: Left: Single-point measurements at various locations of a 
turbulent wake flow, Re=6500, x/d=28, y/d = a)0.87 b)2.25  
c)3.4  d)4.21  Right: Shadowgraph of a turbulent shear layer 
revealing several levels of large coherent structures2 

 
Since the early seventies, the discovery of the existence of three-dimensional coherent structures within 

turbulent flows2 (see Figure 1b) using qualitative flow visualization methods (i.e. shadowgraphs, Schlieren systems, 
dye injection, etc) has been of significant interest for turbulence researchers. While flow visualization techniques 
have been around since the days of Prandtl, it is only recently that the advent of modern imaging, laser, and data 
acquisition technology has allowed for qualitative flow visualization to become quantitative.  These advents have 
allowed for the development and advancement of a relatively new measurement technique, Particle Image 
Velocimetry (PIV), specifically its digital implementation, which allows for the global measurements of two-
component velocities within a two-dimensional domain through time.  Because of its ability to provide global two-
dimensional kinematic information as well as its ability to map the evolution of coherent structures through time, 
PIV has become a powerful tool in studying, understanding, and modeling fluid flow behavior.  This chapter is 
therefore dedicated to reviewing digital PIV, specifically its most widely used implementation, cross-correlation 
PIV.  Section 2.1 presents a general description of 2D PIV, section 2.2 discusses the fundamentals of cross-
correlation PIV, section 2.3 discusses sources of errors within PIV measurements, section 2.4 discusses calculations 
of differential and integral flow properties from PIV velocity data, section 2.5 discusses outlier identification 
methods and section 2.6 discusses advanced PIV methods.  While PIV has become the dominant technique for flow 
field measurements, recent new methods have emerged that are allowing fluid mechanics experimentalists to 
interrogate and measure three-component velocities within a three-dimensional domain through time.  One of these 
methods, the Three-Dimensional Defocusing Particle Image Velocimetry technique (3DDPIV) technique, will be 
presented in section 3. 

2 TWO-DIMENSIONAL PARTICLE IMAGE VELOCIMETRY (2D PIV) 
Particle Tracking Velocimetry (PTV), Laser Speckle Velocimetry (LSV), and Particle Image Velocimetry 

(PIV) all measure instantaneous flow fields by recording images of suspended seed particles in flows at successive 
instants in time. An important difference among the three techniques comes from the typical seeding densities that 
can be dealt with by each technique. PTV is appropriate with “low” seeding density experiments, PIV with 
“medium” seeding density and LSV with “high” seeding density.  

Historically, LSV and PIV techniques have evolved separately from the PTV technique. In LSV and PIV, 
fluid velocity information at an “interrogation region” is obtained from many tracer particles, and it is obtained as 
the most probable statistical value.  In PIV, a typical interrogation region may contain images of 10-20 particles. In 
LSV, the particle densities are so large that individual particles are not distinguishable.  Consequently, the scattered 

(d) 
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light interfere to form speckles, hence its name Laser Speckle Velocimetry.  Correlation of either particle images or 
particle speckles can be done using identical techniques. Hence, LSV and PIV are essentially the same technique, 
used with different seeding density of particles. 

In PTV, the acquired data is a time sequence of individual tracer particles in the flow. In order to be able to 
track individual particles from frame to frame, the seeding density needs to be small. Unlike PIV, PTV results in 
sparse velocity vectors distributions. Guezennec, Y. G.  et al., for example, have developed an automated three-
dimensional particle tracking velocimetry system that provides time-resolved measurements in a volume3.  

2.1 General Description of 2D PIV 
2.1.1 2D PIV Setup 

The principle layout schematic of a modern 2D PIV system is shown in Figure 2.4 First, the flow facility must 
be seeded with particles that act as fluid tracers (section 2.1.2).  A pulsed light source (most often a laser) and its 
necessary optics used to generate a thin light sheet is used to illuminate a cross-section of the seeded flow field 
(sections 2.1.3 and 2.1.4).   A camera located perpendicular to the light sheet is used to acquire global and 
sequential images of the illuminated flow field (section 2.1.5).  Electronic equipment is used to generate and 
synchronize the laser pulsing with the camera’s frame rate timing sequence (not shown), such that each image is 
singly exposed (section 2.1.5).  Lastly, a data acquisition system (not shown) is used to record sequential images 
from the camera. 

Generally speaking, particle displacements are locally calculated from the acquired images using a cross-
correlation algorithm (sections 2.2, 2.3, 2.4, 2.5, 2.6).  These displacements are then converted from the image 
pixelated domain to the spatial domain via a calibration procedure.  Finally, the particle displacements within the 
spatial domain are then divided by the time separation between the laser pulses that singly exposed sequential 
images, i.e. velocity = displacement/Δt, to provide the velocity field. 

 
Figure 2: Principal layout of PIV system for typical wind or water tunnel applications4 

2.1.2 Seeding Particles 
A PIV image is generated from the seeding particles in the flow field. Typically particles are added to the 

flow to have control over their size, distribution, and concentration.  For ease of use, these particles should be non-
toxic, non-corrosive, and chemically inert. They should also be small enough to be good flow tracers, yet large 
enough to scatter sufficient light for imaging.  As a first estimate to particle motion in relation to fluid motion, it can 
be shown that the step response of the particle velocity, Up, follows an exponential law5: 

 ( ) 1 expp

s

t
U t U

t
= − −

⎡ ⎛ ⎞⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

, (1) 

where ts is the relaxation time of the particle, 

 2
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p

s pt d
ρ

μ
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where ρp is the particle density, dp is the particle diameter, and μ is the fluid dynamic viscosity.  Therefore, the 
smallest time scales of the fluid must be greater than the particle’s relaxation time, if the particle is to accurately 
represent the local fluid velocity. 

In a detailed review paper, Melling6 presents a wide variety of tracer particles that have been used in liquid 
and gas PIV experiments, as well as methods of generating seeding particles and introducing them into the flow.  
For gas flow applications, theatrical smoke, different kinds of atomized oils, glass micro-balloons, titanium dioxide 
(TiO2), and aluminum oxide (Al2O3) have been used.  Typical theatrical smoke generators are inexpensive, and they 
generate plenty of particles. Oil can be atomized using devices such as a Laskin nozzle, generating particles in the 
micron to submicron range, which are particularly useful for high-speed applications.  Titanium dioxide (TiO2), and 
aluminum oxide (Al2O3) are useful for high temperature applications such as combustion, and flame measurements.  
For liquid flow applications, silver-coated hollow glass spheres, polymers, titanium dioxide (TiO2), aluminum oxide 
(Al2O3), conifer pollen, and hydrogen and oxygen bubbles are typically used.  Most liquid applications of PIV are in 
recirculating flow set-ups, so when concentrated particles in suspension are added to the flow, homogeneous 
seeding is achieved in a short time. Many gas applications are also in recirculating flow set-ups. However, for single 
pass-through systems, the task of achieving homogeneous seeding at the test section is not trivial, and typically 
requires upstream injection systems that can provide adequate mixing of the tracer particles before they arrive into 
the area of interest. 

2.1.3 Light Sources 
In the point measurement technique of LDA, the coherence property of lasers is utilized to generate a fringe 

pattern at the measurement volume.  For PIV, however, the laser’s coherence property is not a requirement for 
measurements; hence, the lasers are used only as a source of bright illumination.  In addition, PIV image acquisition 
should be acquired using short light pulses to prevent particle image streaking. Hence, pulsed lasers become 
obvious choices for PIV work.  The most commonly used laser in modern PIV systems is the Nd:YAG laser.  
Nd:YAG lasers emit infrared radiation at 1064 nm, where for PIV applications, the frequency is doubled to 532nm, 
green, to allow for particle illumination and reflection in the visible spectrum. Presently, PIV Nd:YAG lasers can 
provide power from 12 mJ to 1000 mJ per pulse. Pulse durations for PIV Nd:YAG lasers are typically 5-10 
nanoseconds, with pulse frequencies in the range of 1-1000 Hz, with power being inversely proportional to the 
pulse frequency.  Pulse frequencies of 15 Hz and 30Hz are most commonly used in order to be able to properly 
synchronize with image acquisition cameras.  As mentioned in section 2.1.1, cross-correlation PIV requires that 
each image be singly exposed.  Therefore, to achieve a wide range of pulse separations, two separate laser cavities 
are used where the laser pulses can be adjusted with respect to each other using appropriate electronics equipment.  
These lasers, typically called dual lasers, are housed into a single unit, containing beam combining optics, frequency 
doubler, alignment optics, and an infrared beam dump.  This setup allows the two laser pulses to be superimposed, 
and manipulated thereafter with the same optics (see Figure 3).  

 
Figure 3:  Dual-cavity Nd:YAG laser with resonators and beam combining optics4 

2.1.4 Light Sheet Optics 
Fiber optics are commonly used for delivering Argon-Ion beams conveniently and safely. Single-mode 

polarization preserving fibers can be used for delivering up to 1 Watt of input power, whereas multi-mode fibers 
can accept up to 10 Watts.  
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Figure 4: Example of a typical light sheet generating optical setup7 

The short duration high power beams from pulsed Nd:YAG lasers can instantly damage optical fibers.  Hence, the 
most standard methods generate a laser sheet by using laser optics.  The variables to control in generating the light 
sheet in relation to the location of the laser with respect to the experimental setup are its spreading angle and its 
thickness, or its “beam waist”.  There are many ways to achieve proper control that include a variety of 
combinations of cylindrical and/or spherical lenses.  A typical setup, for example as used by Maheo7 employing 3 
cylindrical lenses, is shown in Figure 4.  In this example, the first lens is a diverging cylindrical lens that is used to 
spread the beam into a sheet.  The second and third lenses are used to control the location of the beam’s waist.  To 
do this, second and third lenses, converging and diverging, respectively, and both rotated 90 degrees with respect to 
the first lens, are used.  Then, varying the distance between the second and third lens will allow for the adjustment 
of the beam’s waist’s location.   

2.1.5 Image Acquisition CCDs 
Cross-correlation cameras have become the preferred method of acquiring images. The cross-correlation 

cameras use high-performance progressive-scan frame interline CCD chips. Such chips include m × n light sensitive 
picture elements (pixels) and an equal number of storage cells (blind cells). The first laser pulse exposes the first 
frame, which is transferred from the light-sensitive cells to the storage cells immediately after the laser pulse (at the 
time of this publication, this transfer time can be as short as 200 ns). The second laser pulse is then fired to expose 
the second frame (see Figure 5).  The storage cells now contain the first camera frame of the pair with information 
about the initial positions of seeding particles. The light-sensitive pixels contain the second camera frame, which 
has information on the final positions of the seeding particles. Using a framegrabber, these two image frames are 
then transferred sequentially from the camera onto the computer’s RAM memory or its hard drive.  

 

 
Figure 5: Timing diagram showing asynchronous laser pulsing in relation to the camera's frame rate8 

Cross-correlation CCD cameras are available with resolutions up to 2672 x 4008 pixels, and framing rates 
from 4.85 Hz to as high as 1KHz, with the framing rate being inversely proportional to the resolution.  8-Bit 
digitization has been shown to be sufficient for most purposes4.  Flow fields with velocities ranging from 
micrometers per second to supersonic speeds can be studied since inter-frame time separations down to few hundred 
nanoseconds can be obtained. One interesting option of these cameras is that they can be asynchronously reset. This 

-200 mm cylindrical lens 

100 mm cylindrical lens 

60 mm cylindrical lens 
Controls the width of the sheet
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is particularly useful in conjunction with the special triggering options for synchronizing measurements to external 
events, such as rotating machinery. 

2.2 Fundamentals of Cross-Correlation Particle Image Velocimetry:  
The historical development of PIV can be found in a series of papers archived in the SPIE Milestone Series 

Volume 999, which include many foundational and fundamental works including Willert & Gharib10; Adrian11; 
Lourenco. et al.12; Westerweel13). A fairly recent book, Particle Image Velocimetry – A Practical Guide, and paper 
by Westerweel,  Fundamentals of Digital Particle Image Velocimetry17, are also excellent sources of information on 
the fundamental aspects of PIV.  Detailed derivations of the statistical description of cross-correlation PIV have 
been provided by Adrian14,15,16, Westerweel13,17, and Raffel et al.4.  Below, the main results of these works are 
presented.   

2.2.1 A Visual Representation of the Cross-Correlation Concept 
Visually, the correlation concept can be shown using Figure 68.  Figure 6a and Figure 6b show instantaneous 

images taken from a particle field at two consecutive times, with a time separation of Δt. If the second particle field 
is translated horizontally, superposition of the translated image with the first (Figure 6c) allows for visual detection 
of horizontal particle motions.  Likewise, if the second particle field is rotated, superposition of the rotated image 
with the first (Figure 6d) allows for visual detection of rotating motions.   

   
 a b 

   
 c d 

Figure 6:  a and b are sample particle images.  By translating a with respect to b and overlaying the two, a simulated 
translational shift is obtained and shown in c.  By rotating a with respect to b and overlaying the two, a 
rotational shift is obtained and shown in d8. 

To obtain a quantitative two-dimensional vector field from such images, particle images must be 
systematically interrogated.  To do so, these recorded images are sampled using an interrogation window (see 
Figure 7, left), the dimensions of which determine the spatial resolution of the measurement. The interrogation 
regions can be adjacent to each other, or more commonly, have partial overlap with their neighbors that will allow 
for increased spatial resolution. The shape of the interrogation regions can deviate from square to accommodate 
flow gradients.  
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Historically, two PIV methods have been developed, first an autocorrelation method was developed, which 
was then followed by a cross-correlation method.  The auto-correlation method required that the images be doubly 
exposed, while the cross-correlation required that the images be singly exposed. The displacement information is 
then obtained once the correlation peak is determined using either of these methods.  The autocorrelation analysis 
technique was developed for photography-based PIV, since it was not possible to advance the film fast enough 
between the two exposures. The auto-correlation function of a doubly-exposed image has a dominant central peak, 
and two symmetric side peaks. This poses two problems: (1) although the particle displacement is known, there is 
an ambiguity in the flow direction, (2) for very small displacements, the side peaks can partially overlap with the 
central peak, limiting the measurable velocity range. In order to overcome the directional ambiguity problem, image 
shifting techniques using rotating mirrors18,19 and electro-optical techniques18,19,20 have been developed.  To leave 
enough room for the added image shift, larger interrogation regions are used for auto-correlation analysis. By 
displacing the second image at least as much as the largest negative displacement, the directional ambiguity is 
removed. This is analogous to frequency shifting in LDA systems to make them directionally sensitive.  

Due to these complications and to the fact that dual-cavity lasers have allowed for very small pulse 
separations (see section 2.1.3), the preferred method in PIV presently is to singly expose images, and perform cross-
correlation analysis, such as that as shown in Figure 7. First, image subsamples, f(i,j) and g(i,j), are extracted at the 
same location within the images using an interrogation window (Figure 7a).  Then, a cross-correlation procedure is 
performed on these two interrogated regions.  Figure 7b shows an FFT cross-correlation algorithm, however, a 
direct cross-correlation procedure can also be used (see section 2.2.3).  This procedure results in a cross-correlation 
distribution with the pixel domain within the interrogated regions with a dominant peak corresponding to the shift of 
the particles, (see Figure 7c and Figure 12) designated by (dx,dy).  Lastly, the pixel shift (dx,dy) is converted into a 
velocity through calibration parameters (see Figure 7d).  Details of these steps from a theoretical foundation to 
practical implementation are described in the following sections. 

 
 a  b c d 

Figure 7: Cross-correlation data processing procedure using an FFT algorithm a an interrogation window 
subsamples the main sequential image pairs; b a cross-correlation procedure is performed, in this 
case, an FFT implementation is shown; c within the cross-correlation domain, the peak’s location 
corresponding to the average shift of particles within the interrogation windows is identified; d this 
shift is converted to physical space, providing a velocity vector 

2.2.2 Statistical Description of Cross-Correlation Particle Image Velocimetry4,17 
Before discussing the presently used cross-correlation analyses methods, it is important that a theoretical 

foundation is established.  First, the tracer particle ensemble cross-covariance in physical three-dimensional space is 
presented.  As these tracer particles are then imaged onto a two-dimensional domain, i.e. the CCD, the two-
dimensional spatial ensemble cross-covariance of the projected tracer particles onto the two-dimensional domain is 
presented.   Finally, several optimization considerations are discussed. 

2.2.2.1 Tracer Particle Ensemble Cross-Covariance in Physical Space 
The statistical description of fluid tracer particles is given by studying the ensemble of all possible tracer 

particle distributions, ( ),X tG
r

, for a given flow field, ( ),X tu
r

, where the tracer particle distribution within the 

physical spatial domain, X
r

, at time t is defined to be 

 ( ) ( )[ ],
N

i
i

G X t X X tδ
=

= −∑
1

r r r
, (3) 

where N is the total number of particles within the domain of interest, ( )Xδ
r

is the Dirac function, and ( )
i tX
r

 is the 
position vector of the i-th particle at time t, so that the integral of G over a volume yields the total number of 
particles within the volume.  The particle distribution given in Equation 3 can also be represented in vector form as  
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( )
( )

( )N

X t

X t

X t

Γ =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

r

r
r

M
r

. (4) 

In order to measure similarities between particle distributions at two different times, the ensemble cross-covariance 
is considered and defined as: 
 ( ) ( ) ( ) ( ) ( ),G GR X X G X G X G X G X′ ′′

′ ′′ ′ ′ ′′ ′′ ′ ′ ′′ ′′= −
r r r r r r

, (5) 

where ⋅ symbolizes the ensemble average.  The ensemble mean of ( )G X
r

and ( ) ( )G X G X′ ′ ′′ ′′
r r

 (suppressing the 

t-dependences, which are contained in X) are given by 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

,

G X G d

G X G X G G d d

ρ

ρ ρ

= Γ Γ Γ

′ ′ ′′ ′′ ′ ′ ′′ ′′ ′ ′′ ′ ′ ′′= Γ Γ Γ Γ Γ Γ Γ

∫
∫ ∫

r r r r

r r r r r r r r r  (6) 

where ( )ρ Γ
r

 is the probability density function for Γ
r

, and ( )ρ ′ ′′Γ Γ
r r

is the conditional probability density function 

for ′′Γ
r

 given the initial state ′Γ
r

.  For a homogeneous tracer particle distribution, where the number density of the 
particles, C, is constant,  

 
( ) ( )

( ) ( ) [ ]
,

,

G X G X C

G X G X C X X D Cδ

′ ′ ′′ ′′= =

′ ′ ′′ ′′ ′′ ′= − − + 2

r r

r r r r r  (7) 

where ( ); ,D X t t′ ′′
r r

 is the displacement of the tracer particle during the time interval [ ],t t′ ′′ .  The ensemble cross-
covariance thus reduces to 
 ( ) [ ],G GR X X C X X Dδ′ ′′

′ ′′ ′′ ′= − −
r r r r r

. (8) 

2.2.2.2 Spatial Ensemble Cross-Covariance in Projected 2D domain 
It is important to realize that Equations 4 and 8 give the cross-covariance of particle distributions in the physical 
spatial domain, X

r
, thereby not making them directly applicable to images obtained from these particle distributions.  

Nevertheless, to develop a cross-covariance expression for PIV images, the imaging process must be first 
considered.  As described in section 2.1.1, a laser sheet is generated, and used to illuminate a cross-section of the 
flow, which has been previously seeded with tracer particles.  This light sheet will have a thickness, ΔZ0, typically 
with a Gaussian intensity profile within the depth of the sheet (see Figure 8).  The laser sheet is assumed to be 
uniform in its plane, and the image acquisition optics are assumed to be aberration-free circular lenses with a given 
numerical aperture F#.  The particles’ images are assumed to be in focus, which is valid if the sheet thickness is less 
than the imaging depth of field.11   

 
Figure 8: Three-dimensional volume representing the laser light sheet illumination and the particles illuminated 

within this light sheet17 
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The imaging process projects the particles’ reflected illumination onto the planar image domain, ( ),x x y=
r

, i.e. the 
CCD, and is represented mathematically as  

 ( ) ( ) ( )0

1
, ,

z

g x t I Z G X t dZ
I

= ∫
rr

, (9) 

where x MX= , y MY= , M is the image magnification, and ( )0I Z  is the light sheet intensity profile with a 

maximum zI , whereby it is assumed that tracer particle projections onto the image domain involves only an 
integration along the Z-coordinate.  The tracer particles’ image on the image domain can be represented by a point-
spread function, t(x,y),  such that the image intensity I(x,y), for particle tracer densities sufficiently low that do not 
allow particle overlap to occur, can be represented by 
 ( ) ( )( , ) , ,= − −∫ ∫zI x y I t s x t y g s t ds dt . (10) 

Using the definition given in Equation 5, the image ensemble cross-covariance, i.e. ( , )I x t′
r

and ( , )I x t′′
r

, can be 
reduced to 
 ( ) ( ) ( )0II I DR s F Z R s sδ= Δ ⋅ ⋅ −

r r r
, (11) 

where  

 

( ) ( )

( )

( ) ( ) ( )

( )
( ) ( )

( )

2 2 2

0 0

0

2

0

0 0
0 2

0

,

1
, , ,

I Z t

t

R s C Z M I t F s

t t x y dx dy

F x y t u v t u x u y du dv
t

I Z I Z Z dZ
F Z

I Z dZ

−
= Δ

=

= + +

+ Δ
Δ =

∫∫

∫∫

∫

∫

r r

, (12) 

( ),s x y=
r

and ( ),Ds M X Y= ⋅ Δ Δ
r

is the particle tracer displacement on the image domain.15  ( )0F ZΔ represents 
the loss of correlation due to tracer particles’ motion perpendicular to the light sheet, t0

2 is the normalization to Ft, 
the self-correlation of each tracer particle image, and RI is the image auto-correlation.   

In implementation, ensemble averages of the flow field cannot be obtained unless the flow is steady or 
periodic.  Therefore, if spatial averaging is ergodic with respect to ensemble averaging, the ensemble average can be 
replaced with spatial averaging defined as 
 ( ) ( ) ( ) ( ) ( )′ ′ ′′ ′′= + +∫∫

r r r r r r r r
C s W x I x W x s I x s ds . (13) 

Ergodicity can be established by considering the quantity: 
| |

| |
| |

( , '(lim ) )
| | G G

r

r
r

R X X r G X dr
r ′ ′

→∞
−

+ −∫
21

r

r
r

r r rr r
r  

A sufficient condition for ergodicity is that the above limit vanish.  From (7) and (8), 
( ) [ ],G GR X X r C rδ′ ′′

′ + =
r r r r  

( )G X C′ =
r

 
Since integration of the delta function in the first term in the integrand yields C, the concentration, the integrand 
vanishes identically and the ensemble average can be replaced with the spatial average as defined in (13).  Since the 
distribution is homogeneous, this can be rewritten as:  
 ( ) ( ) ( ) ( ) ( ) ( ) ( )D C FC s C s C s C s R s R s R s′ ′= + = + + +

r r r r r r r
, (14) 

where ( )C s
r

is the ensemble mean, ( )C s′ r
is the fluctuating component with respect to the ensemble mean, 

( )DR s
r

is the displacement correlation peak, ( )CR s
r

is the constant background correlation, and ( )FR s
r

is the 
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correlation between the mean and fluctuating image intensities.  These last two terms can be eliminated by 
subtracting the mean image intensity from I’ and I”.  The displacement correlation peak is given by  

 ( ) ( )2

0 0D I I Z t DR s N F F I t F s sδ= ∗ −
r r r

, (15) 

where * denotes a convolution operation, 2 2

0 /I IN C Z D M= Δ is the image density, DI
2 is the area associated with 

the interrogation window, and  

 ( ) ( ) ( )
2

1
I

I

F s W x W x s ds
D

′ ′′= +∫
r r r r r

. (16) 

It is important to realize that the spatial correlation resulting in Equation 15 correlates particles that are within two 
finite domains, W’ and W’’.  As such, due to the flow, tracer particles can leave and enter these interrogation 
domains such that not all particles within the first interrogation domain, W’, will exist in the second interrogation 
domain, W’’.  The portion of the area coincident to both interrogation domains that contain images of the same 
tracer particles is denoted by Equation 16, and is pictorially shown in Figure 9.  This term therefore represents the 
loss of correlation in the spatial cross-correlation (Equation 15) due to in-plane loss-of-pairs, and is the only 
difference between the ensemble correlation and the spatial correlation. 

 
Figure 9:  The number of particle–image pairs that can be contained in an interrogation region is reduced for 

increasing displacement17 

2.2.2.3 Optimization Considerations 
The spatial cross-correlation derived above is best suited for capturing translational motion.  For such 

motions, the resulting cross-correlation produces a near delta-function peak within the cross-correlation domain.   
However, any deviation from translational motion, i.e. rotation and/or shear, causes a broadening of the peak 
distribution, as well as a reduction in its peak value.  If the velocity differences (due to shear and/or rotation) within 
the interrogation volume are small with respect to the width of the interacting interrogation windows, then the 
displacement field will be sufficiently uniform.   

 
Figure 10: The displacement-correlation peak is skewed17.  RI’I” represents tracer particle ensemble cross-covariance. 
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Figure 11: The effect of using differently sized interrogation windows on FI 

17. 

While tracer particles’ motion creates unpaired particle images within the two interrogation volumes that 
broaden the cross-correlation peak, it also shifts the peak value towards slightly lower displacement values (see 
Figure 10).  This bias occurs for even the most basic motions, such as uniform flows, and is enhanced when flow 
gradients exist.  Fortunately, there are three solutions that can eliminate this problem.  The first is to divide the 
correlation by FI

13.  The second is to use different size interrogation windows such that FI will be constant within its 
central portion, thus preventing any biasing14.   This can be seen in the middle and bottom drawings of Figure 11.  
The third way is to shift one of the two interrogation windows an amount equal to the tracer particles’ displacement, 
and in so doing, capture all tracer particle images common to both interrogation windows21.  This can be seen in the 
top drawing of Figure 11, where the peak of FI would coincide with the cross-correlation peak. 

To further ensure displacement measurement accuracy, it is important that the correlation peak, RD, be strong 
with respect to the fluctuating correlation, C’ (see Equation 14).  In this respect, NIFIFO, which represents the 
effective tracer particle image pair density within the interrogation region, should be maximized.   Keane and 
Adrian14 suggest that for high intensity images 

 ,I I O I ON F F and F F> = =7 1  (17a) 

 / . ,
I

M u t DΔ Δ < 0 03  (17b) 

 / ,M u t dτΔ Δ < 1  (17c) 
where M is the image magnification, Δu is the velocity difference within the interrogation window, Δt is the time 
separation between image exposures, and dτ is tracer particle image diameter.  Following the procedures above, FI 
can be easily maximized to unity.  Furthermore, Equations 17b,c provide constraints on the velocity gradients that 
can be tolerated within an interrogation window.  Lastly, since FO (Equation 12) represents the loss of correlation 
due to tracer particles’ motion perpendicular to the light sheet, it is important that out-of-plane tracer particles’ 
displacements be less than one-quarter of ΔZ.17   

2.2.3 Digital Implementation of Cross-Correlation Particle Image Velocimetry 
Due to the nature of a CCD camera, once an image is acquired, it is pixilated and therefore discretized.  The 

intensity value of each pixel is read through an analog-to-digital converter, and is therefore quantized; typically with 
an 8-bit converter for a total of 256 (28) quantized levels.  The discretized cross-covariance can therefore be 
mathematically expressed within a discrete domain as13,17 

 ( ) ( )[ ] ( )[ ]
1 1

1
, , ,

*

M N

m n

C r s f m n f g m r n s g
M N = =

= − + + −∑∑ , (18) 

where ( ),f m n and ( ),g m n  represent the first and second subsampled images, respectively, M and N represent 

the number of rows and columns within the images, ( ),C m n  represents the discretized correlation function, (r,s) 

represents the location at which the correlation is calculated, and f and g represent the mean image intensity of the 
interrogation windows,  f and g, respectively.  Its corresponding in-plane loss-of-pair term is 
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,13,17 (19) 

which, per section 2.2.2.3, can then be used to divide the cross-covariance (Equation 18) in order to obtain an 
unbiased displacement measurement.  Willert4,22 also suggests using another discretized cross-covariance 
description that inherently accounts for the in-plane loss-of-pair term: 
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where ( ),g r s is the average of g coincident with the interrogation window, f.   
To relieve the heavy computation burden, Willert and Gharib10 have suggested using fast Fourier transforms 

(FFT) to significantly speed up the cross-correlation calculations, since doing so would reduce the number of 
computational operations for each interrogated region from N4 to N2log2N.  This procedure is outlined in Figure 7.  
Furthermore, computational efficiency can be further increased by using the symmetry properties of real-valued 
images, which state that the real part of an FFT is symmetric, while its imaginary part is anti-symmetric.  Once the 
cross-correlation peak is determined, the interrogation window systematically interrogates the rest of the image pair, 
thereby providing a two-dimensional vector field.   

2.2.4 Classical Sub-pixel Peak Finding Methods 
As the image domains are discretized, Equations 18 and 20 shows that the discretized cross-correlation 

domain will exist only at integer values (see Figure 12).  This means that the peak value within the cross-correlation 
domain, corresponding to the particle shifts within the interrogated region, is at best measured to an integer value, 
with an uncertainty of ±1/2 pixel.  While this may not seem significant, it is important to realize that, for example, 
for window sizes of 32 x 32, and maximum particle shifts of 1/3 of the window size, the uncertainty of a maximum 
particle shift of 10 pixels, is at best 5%.  Given that vorticity and strain rates are differentiably calculated from the 
velocity (see section 2.3), their uncertainties will be about 10%, which is unacceptable.  As such, methods were 
developed to obtain sub-pixel accuracy. 

 
Figure 12: Sample cross-correlation peak showing single dominant peak corresponding to the magnitude and 

direction of particle shifts10 
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Table 1: Three-point estimators used to achieve subpixel resolution.  The indices (i,j) correspond to the spatial 
location of the maximum location of the correlation value within the correlation domain. 4, 13  

Initially, centroiding, defined as the ratio of the first order moment to the zeroth order moment, was used, which 
required the correlation domain to be thresholded in order to define the region containing the correlation peak23.  
Unfortunately, this method strongly biased the displacement measurements towards integer values, creating a severe 
peak-locking effect on processed data (see Figure 13)17,24.  Fortunately, more robust approaches were also 
developed, which curve-fitted the maximum peak and its two side-peaks, separately in both the x- and y-directions, 
with a function, in order to obtain sub-pixel accuracy.  Typically, these three-point estimating curve-fits have been 
either parabolic or Gaussian, with Gaussian being the more frequently used (see Table 1) function.  Its frequent use 
has been justified, since the particle images, well approximated by Gaussian intensity distributions, when correlated 
also result in a Gaussian intensity distribution.  Its estimation is therefore much better predicted using a Gaussian 
curve fit, rather than a parabolic curve fit, which has been also been shown through calibration experiments.25  
Furthermore, its peak-locking effect (see section 2.3) is dramatically reduced (see Figure 13).  
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 Centroid Peak Fit Gaussian Peak Fit 

Figure 13: Histograms of the measured axial displacement (in pixels) in a turbulent pipe flow using the centroid and 
Gaussian peak fit for the sub-pixel interpolation. 17,24 

2.3 Sources of Error 
As with all experimental methods, PIV measurements are susceptible to error.  There are many parameters 

that affect the accuracy of PIV measurements: sub-pixel peak fitting, tracer particle image diameter, tracer particle 
image intensity distribution, window interrogation size, tracer particle image shift, quantization effects, background 
noise, displacement gradients within an interrogation window, and out-of-plane tracer particle motion.  It is 
therefore important to be able to understand how each of these variables affects the error, or uncertainty of PIV 
measurements.      

 
Figure 14: Bias error of horizontal displacements using 32 x 32 interrogation windows26 

2.3.1 Effect of Sub-pixel Peak Finding Methods 
Error analysis shows that the total error within a measurement can be expressed as the sum of systematic or 

bias errors, biasedε , and random errors, which are usually characterized as root-mean-square values, rmsε : 

 total biased rmsε ε ε= +  (21) 

Using a photographic auto-correlation PIV system, Prasad et al.26 have shown that for fixed tracer particle image 
size, a bias error did exist, and was due to the centroid sub-pixel peak finding method that was used (see Figure 14).  
Here, it can be clearly seen that the bias error is sinusoidal with respect to horizontal pixel shifts, where the bias 
error is zero at every integer and ½ integer pixel value.  

In a detailed study of centroid, parabolic, Gaussian, and Whittaker (a truncated sinc kernel) interpolation peak 
finding methods, Lourenco & Krothapalli25 have shown that the Gaussian and Whittaker’s interpolation peak 
finding methods were the most superior in performance (see Figure 15).   
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 (a) (b) (c) 

Figure 15: Actual vs. measured displacements for (a) Parabolic (b) Gaussian and (c) Whittaker's interpolation 
peak finding algorithms.25  

In a further study, Roesgen27 has suggested the use of the sinc function as a subpixel interpolation kernel, 
based on its spectral shape.  The spectral shapes of various interpolation kernels are shown in Figure 16.  In 
application to the data set that is periodic in the spectral domain, it can be seen that the nearest neighbor, linear, M’4 
(a kernel used to resample irregularly gridded data onto a regular grid), and Whittaker kernels are either too wide, 
causing spectral leakage from the side lobes of the data spectrum, or are not constant over the desired section of the 
data spectrum, causing filtering of the data.  The spectrum of the sinc interpolation kernel, however, shows that it is 
uniform over the desired section of the data spectrum, avoiding any data filtration, and zero thereafter, preventing 
any spectral leakage from any of the data’s spectral side lobes.  This strongly suggests that the sinc function would 
be a good choice for an interpolation kernel.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16: Spectral shape of different subpixel interpolation kernels27 

Upon application to synthetic PIV images provided by the Visualization Society of Japan 
(http://www.vsj.or.jp/piv/), the interpolation error was plotted as a function of the sub-pixel shift (see Figure 17).  It 
can be seen clearly that the sinc interpolation kernel has almost non-existent interpolation errors, easily surpassing 
the performance of the widely used Gaussian interpolation kernel. 

data 
spectrum 
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Figure 17: Subpixel interpolation error for different interpolation schemes27 

Most recently, Nobach and Honkanen28 have revisited subpixel interpolation kernels.  Rather than 
implementing two one-dimensional interpolation kernels (one in the x-direction and one in the y-direction), they 
suggest using a two-dimensional 9-point Gaussian regression method (see Figure 18a-b).   Their results as applied 
to particle images with and without noise are shown in Figure 19a-b.  For the ideal case of images that are not noisy, 
the nine-point Gaussian regression and the two 3-point interpolators behave identically for particle image diameters 
larger than 4 pixels, since the particles are Gaussian shaped, and thus better approximated by the Gaussian one-
dimensional and two-dimensional regression interpolators.  For particle image diameters between 2-4 pixels, the 
extra particle image values used towards the two-dimensional regression are sufficiently different from a Gaussian 
regression that the introduced bias errors are non-negligible.  Also discovered was that while the two-dimensional 
Gaussian regression worked perfectly for Gaussian shaped particle images or correlation peaks, if the particle 
shapes differed from the Gaussian shape, the regression did not work that well.  To remedy this situation, the images 
were pre-processed with a low-pass Gaussian filter, which reduced the noise as well as deformed the particle shape 
towards a Gaussian profile.  The results, also presented in Figure 19, show that for particle diameters just over 4 
pixels, the bias error is reduced significantly to almost 10-4 pixels.  Noisy images unfortunately reduce the 
performance of the filtered regression algorithm almost by an order of magnitude, though it still outperforms the 
two one-dimensional interpolation schemes for particle images larger than ~2.2 pixels (see Figure 19b).   

 
Figure 18: a One-dimensional three-point interpolation and b two-dimensional Gaussian regression28 
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Figure 19: Root mean square (RMS) bias of the one-dimensional three-point interpolation and the two-dimensional Gaussian 

regression: a without noise and b with simulated photon noise28 

2.3.2 Effect of Tracer Particle Image Diameter 
Using Gaussian interpolation peak finding methods, Raffel et al.4 performed Monte Carlo simulations of 

translational tracer particle shifts using different particle diameters and interrogation window sizes, in order to 
determine their effects on the measurement uncertainty. (see Figure 20).  As is shown, the optimum tracer particle 
image diameter that minimizes the measurement uncertainty is just above 2 pixels, depending on the interrogation 
window size.  It is also seen that larger window sizes further reduce the measurement uncertainty, as more particles 
within the interrogation window contribute to the cross-correlation peak.   

 
Figure 20: Measurement uncertainty (RMS random error) in digital cross-correlation PIV evaluation with respect 

to varying particle image diameter.  (Simulation parameters: FFT-based correlations, quantization level 
= 8 bits/pixel, no noise, optimum exposure, top-hat light sheet profile, tracer particle image 
density=1/64 pixel-1)4 

 
Figure 21: "Peak locking" is introduced when the particle image diameter is too small for the three-point 

estimator (simulation parameters identical to Figure 20)4 

For particle image diameters smaller than the optimum diameter, the error increases, since the displacements 
become biased towards integer values (see Figure 21) that result in the “peak locking” effect introduced in the 
previous section.  This indicates that the subpixel peak estimator, in this case the Gaussian peak finder, is not 
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suitable for use with these tracer particle image diameters, since such particles are not Gaussian shaped.  In fact, as 
can be seen from Figure 13, other peak finding methods, such as the centroid peak finder, can perform even worse. 

2.3.3 Effect of Tracer Particle Image Shift 
In order to determine the effects of tracer particle image shifts, which had been predicted in section 2.2, Raffel 

et al.4 performed Monte Carlo simulations (see Figure 22) of translational tracer particle shifts showing that for 
particle image shifts larger than 0.5 pixels, the measurement uncertainty grows linearly.  For the same tracer particle 
image diameter, it can be seen that larger windows will result in a shallower slope since the larger window size will 
still capture more particles in common to both interrogated windows that are cross-correlated.  The effect of the 
tracer particle image diameter can also be seen in Figure 22.  Note that the 2 pixel tracer particle image diameter 
results show a much lower uncertainty, as well as a much shallower slope for tracer particle image shifts greater 
than 0.5 pixels, confirming the results shown in Figure 20.  Also interesting is that for particle shifts less than 0.5 
pixels, the measurement uncertainty is linear, reducing to zero at zero shifts.   

 
Figure 22:  Monte Carlo simulation results using FFT-based correlations, for the measurement uncertainty in 

digital cross-correlation PIV evaluation as a function of particle image displacement4 

As predicted in section 2.2.2.3, the bias errors that result due to smaller portions of the interrogation windows 
containing the same tracer particle images can be corrected by dividing the correlation by FI

13.   This has also been 
tested by Raffel et al., the results of which are shown in Figure 23.4  It can be seen that the corrected results have 
substantially lower bias errors than the non-corrected results, thus verifying the predictions made by theory. 

 
Figure 23: Simulation results showing the difference between actual and measured displacement as a 

function of the particle image displacement.  Bias correction remove the displacement bias 
(simulation parameters: FFT-based correlations, dτ = 2.0, no noise, top-hat intensity profile, 
tracer particle image density=1/64 pixel-1)4 

2.3.4 Effect of Tracer Particle Image Density 
As has been indicated previously, larger tracer particle densities will reduce the measurement uncertainty.  

This has also been specifically tested using Monte Carlo simulations of translational tracer particle shifts by Raffel 
et al., the results of which are shown in Figure 24.4  It can be clearly seen here that as the tracer particle image 
density increases from 5.2 to 32, the measurement uncertainty, for particle image shifts greater than 0.5, reduces by 
almost a factor of 3, from .04 to .015.  As was also seen in Figure 22, for tracer particle image shifts less than 0.5 
pixels, the measurement uncertainty is shown to be linear. 
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It should be noted, however, that the tracer particle density is not the only parameter that would determine a 
high probability of detecting a valid displacement.  Other factors, such as the amount of in-plane displacement, FI, 
and the amount of out-of-plane displacement, FI,, also play a significant role, which has been expressed in Equation 
17a.  Towards this end, Raffel et al. have also performed Monte Carlo simulations showing what the percent valid 
detection probability is as a function of the effective particle image pair density, NIFIF0, for a variety of tracer 
particle image densities, and interrogation window sizes (see Figure 25).4   It is seen that for an effective particle 
image pair density greater than 7, the probability for detective valid displacements is greater than 95%.  The 
theoretical Poisson distribution curves that describe the probability of detecting at least a given number of tracer 
particle image pairs, P[n ≥ i], is also shown.  These theoretical curves show that detecting at least 3-4 particles 
matches the simulations, suggesting that in practice, the experimental setup and processing be optimized towards 
this end. 

 
Figure 24: Measurement uncertainty for single exposure/double frame PIV as a function of particle image 

shift for various particle image densities NI. (simulation parameters: FFT-based correlations, 
dτ=2.2 pixels, quantization level = 8 bits/pixel, 32 x 32 pixel interrogation window size, no 
noise, optimum exposure, top-hat light sheet profile.)4 

 
Figure 25: Vector detection probability as a function of the product of image density, NI, in-plane loss of 

pairs, Fi, and out-of-plane loss of pairs, F0.  The solid line represents the probability for having at 
least a given number of particle images in the interrogation spot4 

2.3.5 Effect of Tracer Image Quantization Levels 
Monte Carlo simulations of translational tracer particle shifts have been performed by Raffel et al. to 

determine the effect of image quantization levels on the measurement uncertainty (see Figure 26).4  These results 
show that there is no difference in the measurement uncertainties for quantization levels of 4 bits/pixel and 8 
bits/pixel for particle image shifts greater than 0.4 pixels.  This implies that the noise due to the FFT-based 
correlation dominates.  However, while it might be tempting to reduce image quantizations to 4 bits/pixel, it should 
be noted that the measurement uncertainty using 8-bit quantization drops by a factor of 3.5 as the particle image 
shift reduces to 0 pixels.  As shown in section 2.3.3, by implementing the methods shown in section 2.2.2.3, it is 
possible to reduce the bias error to near zero values, suggesting that using 8-bit CCD will allow for further reduction 
of the measurement uncertainty.  Any further reduction in quantization level below 4 bits/pixel is detrimental, as the 
measurement uncertainties increase by an order of magnitude. 
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Figure 26: Measurement uncertainty for single exposure/double frame PIV as a function of displacement and 

image quantization (simulation parameters: FFT-based correlations, dτ=2.2 pixels, NI=10.2, 32 x 
32 pixel interrogation window size, no noise, optimum exposure, top-hat light sheet profile).4 

2.3.6 Effect of Background Noise 
Raffel et al. have also performed Monte Carlo simulations to determine the effect of background noise on the 

measurement uncertainty (see Figure 27).4  The simulations used a white noise distribution added to each pixel, 
where the noise for each pixel was uncorrelated with its neighbors, or with its companion image at the same pixel 
location.  These results show that for noise levels of up to 10%, the effect is negligible for particle image shifts 
greater than 0.4 pixels.  However, there is noticeable change for particle shifts less than 0.4 pixels, thereby 
suggesting that low noise CCDs are desirable if the particle shifts can be reduced to less than 0.4 pixels (see sections 
2.2.2.3 and 2.3.3). 

 

 
Figure 27: Measurement uncertainty as a function of displacement and various amounts of white 

background noise (simulation parameters: FFT-based correlations, dτ=2.2 pixels, NI=10.2, 32 x 
32 pixel interrogation window size, no noise, optimum exposure, top-hat light sheet profile). 4 

2.3.7 Effect of Displacement Gradients 
Due to the fact that the pixels within most CCDs are either rectangular or square and therefore distributed in a 

Cartesian grid, the PIV methodology is best suited for measuring displacements that are uniform translations.  
However, since fluid flow, which PIV is designed to interrogate, is most often filled with velocity gradients, it is 
important to be able to characterize the behavior of PIV for tracer particles that contain gradients in their 
displacement fields.  Raffel et al. have performed Monte Carlo simulations to determine the effect of displacement 
gradients on the measurement uncertainty, the results of which are shown in Figure 28.4  Here, the particle image 
density and the interrogation window sizes were varied in order to ascertain their effects upon the measurement 
uncertainty for images with particle image shift gradients. Interestingly, it can be seen that the smaller interrogation 
windows and larger tracer particle image densities are able to tolerate larger displacement gradients.  However, the 
window size seems to be the greater factor in reducing the measurement uncertainty since for the same interrogation 
window size, the measurement uncertainty reduction is relatively small compared to the its reduction when for the 
same particle image density, the window size is reduced. 



22 

 

 
Figure 28: Measurement uncertainty as a function of displacement gradient for various particle image 

densities and interrogation window sizes (simulation parameters: FFT-based correlations, dτ=2.2 
pixels, quantization level = 8 bits/pixel, no noise, optimum exposure, top-hat light sheet profile).4 

2.4 Calculation of Differential and Integral Flow Properties from the Velocity field 
In the formulations developed in the previous section, PIV provides global velocity data within a two-

dimensional domain and does not directly measure important differentiable quantities, such as vorticity and strain 
rates, or integral quantities such as circulation, streamlines, or potential lines.  As such, they must be post-calculated 
from the velocity fields.  The following two sections discuss how such calculations can be achieved. 

2.4.1 Calculation of Differential Flow Properties 
The vorticity and strain rates fields are both a consequence of the deformation tensor, which is: 
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When using the vorticity vector, ω
r

, and the strain tensor, ε
r

, the deformation tensor can be expressed as: 
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where ( )ij i j j iu x u xε = ∂ ∂ + ∂ ∂1 2 , and i ijk j ku xω ε= ∂ ∂ .  As 2D PIV is a two-dimensional technique that can 
only provide two-components of the velocity, the measurable deformation matrix reduces to  
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since the third velocity component, and dzd terms cannot be measured.  Since the vorticity and strain rates fields 
cannot be directly measured, differentiation schemes must be used to derive these quantities.  Such schemes, 
however, are susceptible to errors resulting from different grid spacing as well as noise within the velocity data.  It 
is therefore important to be able to study and characterize various differentiation schemes in order to ascertain their 
performance.   
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Table 2: First order differential operators for data spaced at uniform ΔX intervals along the X-axis4 

In a study of several differentiation schemes, Raffel et al.4 were able to document estimates for the first 
derivative, df/dx, of a function f(x) at a discrete location, fi(xi) (see Table 2).  Here, Uε  is the velocity measurement 
uncertainty.  The accuracy of each scheme is defined as the truncation error associated with each scheme, and the 
uncertainty of each scheme is dependent on the velocity measurement uncertainty within the velocity field.  Table 2 
suggests that the forward and backward differentiation schemes would perform poorly, as both their accuracies and 
uncertainties are the highest.   

 
Figure 29: Vorticity field estimates obtained from twice oversampled PIV data, e.g. the interrogation window overlap 

is 50%.  The vortex pair is known to be laminar and thus should have smooth vorticity contours.4 
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To test these predictions, these schemes were applied towards calculating the vorticity from the velocity field 
of a laminar vortex pair, where vorticity contours should be smooth.4,29  Figure 29 shows the vorticity fields of the 
laminar vortex pairs resulting from various differentiation schemes.  It can be clearly seen that the least-squares 
approach produces the smoothest vorticity contours.  Interestingly, the Richardson scheme, which is designed to 
minimize truncation errors, shows not-so-smooth vorticity contours, suggesting that schemes that can best minimize 
both accuracy and uncertainty are the most desirable.   An interesting observation is that while Table 2 suggests that 
the center differencing scheme should produce the best results since it best maximizes the accuracy while 
minimizing the uncertainty, it in fact does not perform as well as the least-squares scheme. 

Also of interest is the effect of the grid spacing.  Table 2 suggests that reducing the size of the grid spacing 
should decrease the accuracy, while increasing the uncertainty.  By increasing the interrogation window from 50% 
(Figure 29) to 75% (Figure 30), the effects of the grid spacing size is seen.  Overall, the results show the undesirable 
effect of an increased vorticity noise level.  However, the peak vorticity value at the vortices’ center is significantly 
increased, closer to its true value. This suggests that the finer grid spacing gives better estimates for the vorticity 
(though noisier), since the area over which the vorticity is averaged is smaller. 

 
Figure 30: Vorticity field estimates obtained from four times oversampled PIV data, e.g. the interrogation 

window overlap is 75%.4 

 
Figure 31: Vorticity field estimates obtained from PIV velocity fields by the circulation method: (left) the 

velocity field is twice oversampled, (right) four times oversampled.  The contours of this laminar 
vortex pair are known to be smooth such that the nonuniformities are due to measurement noise.4 

An alternative to calculating vorticity is through the use of circulation: 
 

c

u dl dSΓ ω= ⋅ =∫ ∫
r rrr

��  (24) 

where Γ is the circulation, and ω
r

 is the vorticity vector.  Given the above, for two-dimensional flows, the average 
z-component vorticity can be calculated as 

 /z Aω Γ= , (25) 

where zω is the average z-component vorticity, and A is the area over which the line and area integrals in Equation 
24 are performed.  This scheme is in fact identical to applying a 3 x 3 smoothing operator to the velocity field 
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followed by a center differencing scheme.13  This approach reduces the uncertainty to . U Xε≈ Δ0 61 .4  The 
application of this scheme to the laminar vortex pair is shown in Figure 31.  The vorticity contours shown are 
comparable to those shown for the least-squares scheme.  However, the advantage of this approach is its better 
estimation of the peak vorticity value.  Again, it can be seen that smaller grid sizes better estimate the value of the 
vorticity peaks, since the area over which the vorticity is averaged is smaller. 

   
 a b c 

Figure 32a-c: a Wall-jet vorticity distribution (central-difference scheme); b Wall-jet vorticity 
distribution (Adaptive Scheme) c -jet vorticity distribution (adaptive scheme and least-
squares) 25 

In an effort to further reduce the total error due to velocity uncertainties and truncation errors, Lourenco and 
Krothapalli25 implemented an adaptive scheme based on the Richardson’s extrapolation principle by combining the 
vorticity estimates at different grid sizes.  Figure 32 shows a typical differentiation result using a central-difference 
scheme, while Figure 32b shows the improved result using the adaptive scheme.  Further investigation showed that 
an improvement in accuracy could be achieved if each of the derivative estimates at the different grid sizes were 
computed using a least squares second order polynomial approximation (see Figure 32c). 

Second order schemes have been further studied towards obtaining more accurate vorticity calculations.  
Fouras and Soria30, recognizing that the vorticity error was composed of both a bias error and a random error, 
investigated the transmission of the velocity uncertainties into the vorticity random error, and the effect of grid 
spacing on the vorticity bias error using various implementations of a second-order polynomial χ2 fit, as described 
by Soria31 that used different grid patterns for calculating the vorticity (see Figure 33).     

 
Figure 33a-c: Rectangular grid patterns used for the calculation of ωz using the χ2 method. The locations of the 

velocity sampling points and the point of interest relative to the velocity sampling points are 
identified for. a The χ2

9 method which uses 9 velocity sampling points; b the χ2
13 method which 

uses 13 velocity sampling points and c the χ2
21 method which uses 21 velocity sampling points.30 

In addition, they developed a theoretical analysis of the random error for the χ2 vorticity calculation method that 
estimates a priori the random vorticity error using χ2

9 , χ2
13 , and χ2

21 vorticity calculation method to be σu/Δ, 
.447σu/Δ, and .328σu/Δ, respectively, where Δ is the grid spacing, and σu is the velocity uncertainty.   The results, 
shown in Figure 34, show that their theory predicts the numerical simulations quite well.  Furthermore, it is seen 
that the random error transmission errors for the χ2

21 method is lower than the χ2
9  and χ2

13 methods by 67% and 
26%, respectively.   
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Figure 34: Ratio of normalized vorticity standard deviation to normalized velocity standard deviation, i.e. λ0, as a 

function of Δ/L. The solid lines are the theoretically predicted variations for vorticity calculated using 
the χ2 method. The symbols are the vorticity results calculated using the χ2 method from numerical 
experiments using noisy velocity data for the Oseen vortex flow field. Some corresponding results for 
vorticity calculated using the finite difference method without and with prior smoothing of the velocity 

field are also shown for comparison.30 ( ) ( )
0

λ σ ω σ∗ ∗=
z

u , where  ( ) ( ) ( )σ ω σ ω∗ =
z z ref

V L , 

( ) ( )σ σ∗ =
ref

u u V , σ(ω) is the random vorticity error, σ(u) is the random velocity error, L is a 
characteristic length scale of the flow,  and Vref is a characteristic velocity of the flow. 

The effects of grid spacing on the vorticity bias error were studied using numerical simulations of an Oseen 
vortex.  The normalized vorticity bias errors as a function of normalized radial distance is shown in Figure 35.  It 
can be seen that as the grid spacing gets smaller with respect to the characteristic length scale of the flow, the bias 
error reduces dramatically.  While it is tempting to reduce this ratio to near zero values, it should be pointed out that 
in practice, this would require very highly resolved velocity measurements, which may be difficult to achieve with 
present technology.  Also seen is that χ2

9 has much lower bias error than χ2
13 or χ2

21, which is due to the different 
spatial filtering characteristics of the vorticity calculation methods.                                                          

                                                                                                                              
 a b c 

Figure 35: Bias error in ωz calculation using exact discretized velocity data of the Oseen vortex for different Δ/L sampling 
separations and using different vorticity calculation methods. a χ2 method using 9 velocity sampling points, b 
χ2 method using 13 velocity sampling points and c χ2 method using 21 velocity sampling points.30 

Recognizing that the spatial resolution is limited towards the large scales by the total image dimensions and 
towards the small scales by the interrogation window size, Foucaut and Stanislas32 performed an exhaustive 
investigation of conventional schemes by studying their transfer functions.  The differentiation schemes studied 
where 2nd, 4th, 6th, and 8th order centered difference, compact difference and Richardson’s extrapolation schemes; 
2nd, 4th, and 6th order noise minimized Richardson extrapolation schemes, a second-order noise minimized least 
squares scheme, and an eight-point circulation scheme. To characterize the PIV data, the PIV spectral response was 
first determined from experimentally obtained PIV results, and compared with results obtained with a hot wire 
anemometer (HWA).   

Figure 36 shows the normalized vorticity bias errors as a function of the grid spacing with respect to the 
characteristic length scale of the flow, Δ/L.  Comparison of this figure with Figure 34 shows that there is a conflict 
between simultaneously minimizing the random and bias errors: the larger the value of Δ/L, the lower the random 
vorticity error, but the higher the bias vorticity error, and visa versa.  Overall, Fouras and Soria found that the χ2

21 



27 

vorticity calculation method resulted in the least overall error, thereby recommending it as the preferred 
differentiation scheme. 

 
Figure 36: Bias error at the vortex centre, i.e. |ωbias(0)|/ωz(0)exact as a function of normalized velocity sampling 

distance Δ/L for the χ2 vorticity calculation method when 9, 13 and 21 velocity sampling points are 
used in the interpolation process and for the FD and AGW-FD vorticity calculation methods30     

Also, a spectrum model, 
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where Enoise is the white noise level used to optimize the fit to the PIV spectrum (Enoise varies with the inverse of the 
window size), X is the interrogation window size, and k is the wave number, was used to best fit and model the PIV 
spectrum.  Furthermore, the window size was optimized by setting the cutoff wave number of the PIV spectrum to 
be where the signal-to-noise ratio was equal to 1.  This approach resulted in a noise level on the order of 1% of the 
velocity dynamic range, an interrogation window size of 44 x 44 pixels2, and a cutoff wave number of 1200 rad/m 
(see Figure 35). 

 
Figure 37: Power spectra of velocity along x, 44 × 44 interrogation window, frequency 

optimization. Equation 10 in the figure refers to Equation 26.32 
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 a b 

 
c 

Figure 38: a Transfer functions of centered difference derivative filters. b Transfer functions of compact difference derivative 
filters.  c Transfer functions of Richardson extrapolation derivative filters. 32 

The transfer functions of the differentiation schemes are shown in Figure 38a-c.  Given that the cutoff wave 
number for the PIV data using 44 x 44 interrogation windows in these figures is 1.37, it can be seen that the 
differentiation scheme with the closest cutoff wave number is the second-order centered difference differentiation 
scheme, which has a cutoff wave number value of 1.39.   

The power spectra of the differentiation schemes are shown in Figure 39.  It can be seen that the best filter is 
the second-order centered difference scheme, since it has the same cutoff wave number as the PIV results.  The 4th 
order Richardson extrapolation and the least-square schemes are identical in behavior, showing a strong filtering 
effect.  On the other hand, the 6th and 10th order compact difference schemes have higher cutoff wave numbers, 
thereby amplifying any noise that would exist in the PIV data.   

 
Figure 39: Power spectra of derivative of velocity along x, 44 × 44 interrogation windows. 32 
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In an effort to overcome the conflict of simultaneously minimizing the random and bias errors, first pointed 
out by Fouras and Soria, and confirmed by Foucaut and Stanislas, Etebari and Vlachos33 hypothesized that by 
combining the favorable bias-error reducing characteristics of the higher order implicit schemes with those of the 
noise-minimizing schemes, a new scheme could be developed that would reduce the overall errors and outperform 
the second order center differencing scheme recommended by both Fouras/Soria and Foucaut/Stanislas.  Towards 
this end, they combined a 4th order compact scheme, which has low bias error, with a noise-optimized Richardson 
extrapolation scheme, which has low noise amplification, which uses a summation procedure of various spatial 
samplings of the derivatives.  Their results suggest that this hybrid compact-Richardson extrapolation scheme 
provides nearly 30% less noise amplification while simultaneously reducing the bias error with respect to the 
centered difference scheme.  They also suggest that further improvements might be attainable if the cutoff wave 
number of this scheme is adjusted to meet the characteristics of the particular experimental PIV data set. 

2.4.2 Calculation of Integral Flow Properties4 
There are several parameters of interest that can be derived using integral methods.  Circulation can be 

achieved using path integrals.  Circulation is defined as 

 Γ = ⋅∫
c

u dl
rr

� , (27) 

where u
r

is the velocity vector, and ld
r

is the differential path length of the total path defining the boundary C.  The 
numerical integration of Equation 27 is straightforward using standard integration methods.  Streamlines and 
potential lines can also be derived using integral methods.  Assuming the flow is two-dimensional, the PIV results 
can be used to derive streamlines and potential lines using the following relations: 

 ∫∫ −=Ψ
xy

vdxudy . (28) 

 Φ = +∫ ∫
x y

udx vdy . (29) 

Performing the integration in Equation 28 to obtain S will not produce unique results, since different frames of 
reference will produce different streamlines.  This is synonymous with reducing the Poisson equation 

 zω−=Ψ∇ 2  (30) 

into the Laplace equation 

 02 =Ψ∇  (31) 

However, since the vorticity field is an approximation, and since boundary conditions need to be specified, 
this integration becomes difficult.  Figure 40, for example, shows the different resulting set of streamlines that occur 
due to different choices of the frame of reference.   



30 

 
Figure 40:  Two-dimensional stream function computed from vortex pair velocity data in a laboratory-fixed 

reference frame (left) and in a reference frame moving 20 mm/s upward with the vortex pair 
(right)4 

2.5 Outlier Detection Methods  

            
Figure 41: Example of a simulated vector field with outliers (left) shows the perfect simulated vector field; 

(right) shows the same field with outliers 

Regardless of how well PIV images are acquired, the post-processing cross-correlation procedure can result 
in spurious vectors due to seeding inhomogeneities, effects of turbulence, varying intensity light sheet, etc.  An 
example of spurious vectors that would infect an otherwise perfect velocity field is shown in Figure 41.  Such 
outliers are most often visibly detectable, and are necessary to identify in order to maintain the integrity of the data 
to allow for proper data interpretation and derivation of differential and integral quantities, such as vorticity, strain 
rates, circulation, and streamlines (see section 2.4).   

Westerweel34 developed a statistical model for isotropic homogenous turbulent flow (in most cases flows that 
are not homogeneous or isotropic can be transformed to a domain where they are both) that characterizes outliers in 
PIV data.  This model was then used to investigate three different outlier detection methods.  For all these methods, 
a displacement residual vector was defined, 

 i ji ji j V Vr ,
'
,, = −

ur urr  (32) 
such that its magnitude squared  

 i j i ji jr V V
2'2

, ,, = −
ur ur

 (33) 

acts as the measure of the deviation of i jV
'
,

ur
, the vector in question, with respect to i jV ,

ur
, the vector’s true value.  In 

practice, the true value of the vector is not known and is estimated using statistics, mean and variance, using the 
neighbors of the vector in question.  The determination on whether the vector in question is spurious or not is then 
determined by statistical tests of the displacement residuals.  In the first model, the global-mean test estimates the 
true value of the vector by using the mean velocity of the whole vector field.  In the second model, the local-mean 
test estimates the true vector by using the mean velocity of a small neighborhood, typically a 3 x 3 eight-connected 
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neighborhood (8 points), surrounding the vector in question.  In the third model, the local-median test estimates the 
true vector components by using the median velocity components within a 3 x 3 neighborhood (9 points, including 
the vector of interest).  Once an estimate of the true velocity is found, the displacement residuals are calculated, and 
tested against a user-selected threshold – if the displacement residual is larger than the threshold, the vector is 
labeled an outlier.  Of the three methods, Westerweel found that the global-mean test performed the worst, the local-
mean test better performed better, and the local-median performed the best.  Specifically, the local-median test 
found 4 times fewer erroneous outlier vectors than the local-mean test.  This procedure can be repeated until there is 
no change in the global vector field.  While useful, this method is limited by the fact that the user must examine 
different threshold constants to determine the optimum value to use with a particular data set.  

Raffel et al.4 suggest a different version of the local-mean test.  Rather than applying the test to the velocity 
magnitude, the test is applied to each of the velocity components.  Then the average velocity of the eight points 
surrounding the vector in question is calculated: 

 ( )
N

i j
n

u u n
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1

1

=

= ∑  (34) 

where N is the 8 neighboring points, ui(n) is velocity component, and <> denotes an average.  Then the standard 
deviation is calculated: 
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The residual is then tested against a threshold, 
 ( )i j threshu u n, ε− < , (36) 

where  
 thresh i jC C1 2 ,ε σ= + , (37) 
and C1 and C2 are under-defined constants.  This procedure can be repeated until there is no change in the global 
vector field.  Similar to the local-median test, while useful, this method is also limited by the fact that the user must 
examine different constant values to determine the optimum values to use with a particular data set. 

Nogueira et al35 also describe a local validation method.  First, the normalized velocity vector residual is 
calculated throughout the velocity domain, 
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where N is the 8 neighboring points, nV
ur

 represents the 8 surrounding velocity vectors, and V 0
ur

 is the velocity 
vector in question.  The location within the velocity field where the residual is a minimum marks a zone where 
vectors achieve a degree of uniformity and hence a zone of “local coherence”.  Then, based on user-defined criteria, 
variations of vectors neighboring those labeled as coherent are examined and joined within the region of coherence.  
In this manner, regions of coherence grow and can merge.  Then once an appreciable number of vectors are 
achieved within a zone, the vectors within this zone are validated.  Figure 42(left) shows a PIV measurement field 
and Figure 42(right) shows the resulting validated vector field.  Similar to the methods described above, this method 
is limited by the fact that the user must select two parameters, the tolerance of the prediction percentage, and the 
number of vectors a coherence zone should contain to be validated.  The tolerance of the prediction percentage 
input, assumes a priori knowledge about the flow as to how much velocity differences can be tolerated.  This value 
is typically set to 20%-35%.  The number of vectors a coherence zone should contain for validation is around 10% 
of the total number of vectors for a correctly sampled flow.   
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Figure 42: (left) Example of PIV measurement.  Contains spurious vectors in an eddy, an undersampled 

mixing layer and a large random vector region due to light glimmer from the visualization 
window. (right) Validated data from left35 

Song et al.36 validate velocity vectors by verifying if the continuity equation is satisfied within Delaunay 
triangles.  If all nodes within a triangle are good vectors, the total flux through all the sides of the triangle, Q1 + Q2 + 
Q3, is very small.  If a node within a triangle is an outlier, the total flux through the triangle is substantially larger.   
Hence, the normalized flux, which varies between 0 and 1 is defined as 

 
( )

Q Q Q
E

Q Q
1 2 3

max ,+ −
=

+ +
 (39) 

where Q+ and Q- are the maximum positive and negative flux through the sides of the triangle, respectively.  It is 
found that a threshold value of E=0.5 is sufficient to identify outliers.  Figure 43(left) shows a simulated velocity 
field and Figure 43(right) shows the resulting validated vector field.  It should be pointed out that while this is a 
robust method for outlier detection, the Delaunay Tessellation method was originally developed as a new PIV 
algorithm, and therefore should the user want to only use the outlier detection scheme, they must go through the 
added steps of generating the Delaunay triangles.   

    
Figure 43: (left) Vector field by Delaunay Tessellation particle tracking Velocimetry method (DT-PTV) with 

1505 particles (right) Vector field after removing the spurious vectors in the case of (left). Of the 
1505 particles, DT-PTV found 1295 vectors.  After removing the spurious vectors, 1077 vectors 
remained.36 

Foucaut et al.37 describe an iterative procedure for outlier detection.  First, during the PIV procedure, the 
three highest peaks from the correlation domain are recorded, their corresponding residuals are calculated, and the 
best candidate is selected through the use of a local-median filter.   This is done iteratively until there is no change 
in the global vector field.  Second, the surviving residuals are thresholded to identify spurious vectors.  As noted by 
the authors, the difficulty is in identifying the proper choice of the threshold.  For this determination, the authors 
suggest estimating the percentage of valid vectors by hand in a few vector fields, and calculating the cumulative 
histogram of the residual normalized by the velocity vector located at a particular location.  Then by selecting an 
appropriate percentage limit, the appropriate residual, and hence threshold, can be identified and implemented for 
the rest of the data set.  Similar to previous methods, while useful, this method is also limited by the fact that the 
user must determine the optimum threshold by manually examining the cumulative histograms for selected flow 
fields. 
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Liang et al.38 suggest that spurious vector detection is a pattern recognition problem, and as such, proposed to 
use cellular neural networks (CNN), a local feedback network, to identify outliers.  The weights of the neurons are 
defined as 
 = −, ,i j i jW T r  (40) 
where rij, the velocity residual, is defined as 
 = − = −, ,i j i ji x x i y yr V V or r V V , (41) 

depending on which of the velocity component field is being investigated, and T is a threshold.  The method was 
tested on several artificially generated stagnation flows scattered with spurious vectors, and which were also 
identified by the average velocity gradient defined as 

 ( ) ( ) ( ) ( )+ + + += − + − + − + −⎡ ⎤
⎣ ⎦

2 2 2 2

1, , , 1 , 1, , , 1 , 2i j i j i j i j i j i j i j i jG Vx Vx Vx Vx Vy Vy Vy Vy . (42) 

Also, two parameters where introduced to evaluate the effectiveness of the methods.  The first is the 
undetected rate defined as the ratio of the number of spurious vectors that are not detected over the total number of 
spurious vectors; the second is the over-detected rate defined as the ratio of the number of valid vectors that are 
detected as errors over the total number of spurious vectors.  For comparison, their scheme was tested against the 
local-median test.  The results suggest that the CNN outperforms the local-median test.  Figure 44a shows that for 
the stagnation flow with G = 0.2, the threshold value that minimizes both the undetected and over-detected rates for 
the CNN and local-median filter are ~0.36 and ~0.47, respectively.  However, the CNN percentage rate, ~0.08, is 
much lower than the local-median filter’s percentage rate, ~0.2.  Similarly, Figure 44b shows that for the stagnation 
flow with G = 0.4, the threshold value that minimizes both the undetected and over-detected rates for the CNN and 
local-median filter are ~0.6 and ~1.05, respectively.  Again, the CNN percentage rate, near 0.0, is much lower than 
the local-median filter’s percentage rate, ~0.53.  Lastly, Figure 44c shows that for the stagnation flow with G = 
0.64, the threshold value that minimizes both the undetected and over-detected rates for the CNN and local-median 
filter are ~0.85 and ~0.88, respectively.  As in both previous cases, the CNN percentage rate, ~0.1, is much lower 
than the local-median filter’s percentage rate, ~0.23.  Also, similar to previous methods, while useful, this method is 
limited by the fact the user must select an appropriate threshold value.  Nevertheless, as seen from the results, if the 
user picks thresholds slightly different than the optimum value, the increase in the undetected/over-detected 
percentages will be slight.  For example, from Figure 44, it can be seen that if one uses the optimum threshold for 
G=0.2 (i.e. T=0.36 using the CNN method) on the G=0.4 and G=0.64 velocity fields, the over-detected percentage 
for both approaches infinity.  Likewise, if one uses the optimum threshold for G=0.64 (i.e. T=0.88 using the CNN 
method) on the G=0.2 and G=0.4 velocity fields, the undetected percentage is 0.60% and 0.40%, respectively.    
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Figure 44: Influence of the threshold on the detecting method, Error=10%. a G=0.2, b G=0.4, c G=0.6438 

Shinneeb et al.39, recognizing the importance of finding a threshold that is insensitive to flow gradients, 
suggested the use of a variable threshold procedure applied to both a local-median filter and the CNN procedure 
introduced by Liang et al.38.  The procedure is as follows.  First, an aggressive local-median filter is implemented to 
identify all outliers, even at the expense of falsely identifying good vectors as spurious vectors.  The vectors are 
then replaced by a Gaussian-weighted average of their neighbors using Equation 43, 
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H = 4 2 pixels and is the width of the Gaussian filter, and the summation is performed over a 5 x 5 region 
surrounding i.  Next, a threshold field is defined by the mean deviation in each velocity component calculated from 
this newly generated velocity field 
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where K is a constant and the summation is performed over the 8 neighboring points.   This threshold field is then 
filtered by a Gaussian kernel (Equation 45) 
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H = 4 2 pixels and is the width of the Gaussian filter, and the summation is performed over a 9 x 9 region 
surrounding i.   
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Figure 45: Performance of the a median and b CNN 

methods using uniform and variable thresholds 
for Field 1 (C=250 x 10-6) velocity field and 
10% Type 1 spurious vectors39 

 
Figure 46: Performance of the a median and b CNN 

methods using uniform and variable thresholds 
for Field 2 velocity field (Nx=Ny=8, Vmax=10) 
and 10% Type 1 spurious vectors39 

To test these procedures, two different types of flow fields were generated.   The first field was described by  
 = =2 ;u Cx u Cxy , (46) 
and the second was described by 
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where C is a constant, Nx and Ny are the number of vortex cells in the x and y directions, respectively, Lx and Ly are 
the sizes of the particle images in the x and y directions, respectively, and Vmax is the maximum velocity component.  
In addition, two different types of spurious vectors were used to populate these flow fields.  The first type calculates 
a spurious vector in a random direction and magnitude distributed uniformly between zero and the maximum 
velocity within the velocity field.  Such a spurious vector is designed to simulate the identification of a noise peak 
within the correlation domain far removed from the signal peak.  The second type calculates a spurious vector 
whose magnitude deviates by a specified percent of the correct local velocity; its direction is randomly chosen.  
Furthermore, to simulate seeding imperfections, these outliers were positioned in randomly located clusters.  To test 
the performance of this approach, the undetected and over-detected definitions introduced by Liang et al.38  were 
used.  From the results shown in Figure 45 and Figure 46, it can be seen that both the median and CNN methods, 
using a variable threshold, outperform the constant threshold method.  Also of interest was the variability of the 
optimum threshold with respect to flow fields having varying velocity gradients.  The results, shown in Figure 47, 
show that these optimum variable thresholds are much more constant with respect to varying velocity gradients, 
indicated by C, than the optimum constant threshold.  Results for Field 2 show similar results.  Lastly, it should be 
pointed out that the smoothing filter parameter, H, has an impact on the percentage of over-detected vectors (see 
Figure 48).  This is due to the fact that it is a function of the interrogation resolution and also the experimental 
conditions.   
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Figure 47: Critical value of T and K for constant and variable techniques. The critical value of T or K is 

determined as that value which yields 1% over-detected vectors. These results are for Field 1 
velocity fields and 10% Type 1 spurious vectors.39 

 
Figure 48: Effect of filter spread H for Field 1 (C = 250 × 10−6) with 10% Type 2 (ΔV/V = 25%, number of 

clusters = 1) spurious vectors for the variable threshold CNN method.39 

Lastly, Westerweel and Scarano40 studied probability density functions of various flows in order to identify a 
single universal threshold value to effectively detect spurious vectors.  This was achieved by modifying the local-
median filter test.  Specifically, the original median residual field, defined and calculated as 
 = −i i mr U U , (48) 
was normalized by the median rm of {r1, r2,…r8}  
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where rm is the median of the surrounding residuals.  The normalized median residual was calculated for different 
grid turbulence data, where it was found that the corresponding histograms nearly collapsed onto a single curve (see 
Figure 49), suggesting that the existence of a universal probability density function.  However, for regions where 
the turbulence levels are very low and the flow is laminar, it was found that the normalized median residual showed 
high values, since the normalization factor, rm’, approaches zero.  This was compensated for by introducing a 
threshold, ε, into Equation 49, resulting in 

 
ε

−
=

+
* i m
i

m

U U
r

r
. (50) 

Trial and error showed that the optimum value was ε=0.1 pixel, which interestingly corresponds to typical rms noise 
levels within PIV data.41   
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Figure 49: The histograms of the residual obtained with the conventional median test a and the normalized 

median test b for the grid turbulence data at decreasing turbulence levels.  The histograms represent 
at least 99.7% of the vector data40 

To test the universality of this approach, the histogram of the standard median residuals and normalized 
median residuals (Equation 50) for various flow fields ranging in Reynolds number from 0.1 to 107 were calculated 
and plotted in Figure 50.  It is clear from this figure that the probability density function does achieve a universal 
distribution.  While the standard median test shows that the optimum residual threshold would be a function of the 
flow field, the normalized median test (Equation 50) shows that since the histograms almost collapse, the optimum 
normalized residual is independent of the flow field.  Further tests show that for a single value of r’=2 applicable to 
all the tested flows, the largest 10% of the residuals and hence spurious vectors can be identified.  This study, 
however, does not mention how many undetected and over-detected vector result from this procedure.   

  
Figure 50: The histograms of the residuals using the conventional median a and the normalized median b for 

the experimental data listed in Table 140 

2.6 Advanced PIV Methods 
2.6.1 Window Shifting Methods 

As discussed in section 2.2, PIV provides an estimate of the true velocity, which is different from the true 
velocity due to noise and in-plane loss-of-pairs due to particle motion.  The variation of this bias error was shown in 
Figure 24, and is repeated here for convenience.  Upon observation, the question arises whether one can take 
advantage of the very small errors shown for particle shifts close to zero.  In implementation, this can be done using 
an iterative adaptive approach.  First, the image pairs are processed in a conventional manner, and then reprocessed 
using the initial results as a guide to adaptively shift the second window for each interrogation region.  This process 
is iteratively repeated until convergence is achieved.  Keane and Adrian14 first proposed using a window offset 
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equal to the particle displacement.  They also recommended using a larger second interrogation window to avoid in-
plane loss-of-pair.  In this manner, FI, the term representing the in-plane loss-of-pair (Equation 16), is maximized, 
causing RD, the term representing the displacement correlation peak (Equation 15) to be maximized as well (see 
Figure 11 center and bottom).   Westerweel et al.21, using discrete offsetting of the same size windows, showed its 
effectiveness in reducing noise.  Figure 51 best shows these results.  With window shifting, the noise reduction in 
the PIV data is so great that its spectrum’s noise level drops by an order of magnitude, agreeing quite nicely with the 
LDV data provided by Comte-Bellot and Corrsin42.   

 
Figure 24:  Measurement uncertainty for single exposure/double frame PIV as a function of particle image shift for various 

particle image densities NI. (simulation parameters: FFT-based correlations, dτ=2.2 pixels, quantization level = 8 
bits/pixel, 32 x 32 pixel interrogation window size, no noise, optimum exposure, top-hat light sheet profile.)4   

 
Figure 51: The normalized power spectrum of the fluctuating streamwise velocity of a turbulent flow behind a 

grid (at 40 grid-mesh lengths away from the grid). The open dots represent the result obtained with 
PIV without window offset; the closed dots the same image data but now with window offset. Also 
plotted are the result obtained with LDV (◊) in the same facility and at the same location as for the 
PIV, and the result obtained with hot-wire anemometry (x) by Comte-Bellot and Corrsin21 

Wereley and Meinhert43 recognized that by keeping the first window fixed and shifting the second window, 
one would be implementing a forward difference interrogation (FDI) algorithm,  
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where the images are recorded at times t and Δt.  For better accuracy, they have suggested using a central difference 
interrogation (CDI) algorithm,  
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where the images are recorded at times t-Δt/2 and t+Δt/2.  For FDI, the velocity approximation is accurate to order 
Δt, while for the CDI, the velocity approximation is accurate to order Δt2.  In implementation, the first image’s 
interrogation windows are shifted by an amount ( )− Δ 2V x t

r r , while the second image’s interrogation windows are 

shifted by an amount ( )Δ 2V x t
r r .  In practice, the amount of shift is first estimated by initially processing the 

images using conventional PIV, and using its results as guide for implementing the CDI routine.  Wereley and 
Meinhert show that within 5 iterations, the solutions converge.   

Gui and Wereley44 also recognized that even with discrete window shifting using the CDI method, a zero 
displacement (see Figure 24) within the correlation domain could never be achieved, since almost all shifts are 
never perfect integer values.  Consequently, they developed a continuous window shifting routine using a bilinear 
interpolator to allow for fractional pixel shifts.  Using synthetically generated images, they tested an FFT-
accelerated non-shifting correlation-based algorithm (FCTR), a discrete window shifting correlation-based 
interrogation algorithm (CDWS), and the continuous window shifting correlation-based interrogation algorithm 
(CCWS). They then documented the influences of bias and random errors, images with and without random 
background noise, particle image size, and particle image number density.   Figure 52 shows the bias and random 
errors for noiseless PIV images.  Clearly, the CCWS algorithm outperforms the FCTR and the CDWS algorithms by 
almost a factor of 5, producing a maximum bias and random error of ~.005 pixels and ~.025 pixels, respectively.  
Figure 53 shows the bias and random errors for noisy PIV images.  This figure also shows that the CCWS algorithm 
outperforms the FCTR and the CDWS algorithms by almost a factor of 5 for the bias errors, and a factor of 3 for the 
random error.  Here, the noise has an effect on the random error, since for the CCDW algorithm the random error is 
~0.03, whereas for the noiseless image, it is near zero.  Also seen is that for all three algorithms, the behavior of the 
bias error is near identical for both the noisy and noiseless images. 

 
Figure 52: Random errors a and bias errors b of 

different algorithms for PIV images 
without background noise44 

 
Figure 53: Random errors a and bias errors b of 

different algorithms44 
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Figure 54 shows the influence of the particle image size on the peak-locking (Figure 54a) and the total error 
(Figure 54b) for each of the algorithms.  These figures show that for particle image diameters greater than 2, the 
peak-locking effect is minimized.  For the effect on the total errors, both the FCTR and the CDWS algorithms show 
a minimum effect for particle image diameters ~1.5 pixels.  However, for the CCWS algorithm, the total error is 
nearly identical to the other algorithms for particle diameters less than 1.5 pixels, but continues to decrease for 
increasing particle diameters. 

 
Figure 54: Influence of particle image size on: a peak-locking factor; b total error44 

Figure 55a shows that the particle image number density has no effect on the peak-locking effect for each of 
the algorithms, but that its effect is the least for the CCWS algorithm.  However, Figure 55b the total errors decrease 
with increasing particle image number density for all algorithms, being the least for the CCWS algorithm.  Figure 
56a shows the effect of the interrogation window size on the peak-locking effect for each of the algorithms.  The 
size of the interrogation window has the largest effect on peak-locking for the CDWS algorithm.  The least effect is 
seen in the FCTR algorithm, and for the CCWS algorithm, the effect of the interrogation window is slight, with a 
slightly increasing effect with increasing window size.  The effect of the interrogation window on the total error, as 
shown in Figure 56b, is seen to be the least with the CCWS algorithm, being almost constant for all interrogation 
window sizes tested.  Gui and Wereley also tested their algorithms on a thermal convection flow, where they show 
the histogram of the resulting PIV vectors in Figure 57.  In this figure, it can be clearly seen that the FDTR and the 
CDWS algorithms show a very strong peak-locking effect, while the CCWS algorithm does not show any evident 
peak-locking effects.   

 
Figure 55: Influence of particle image number on: a peak-

locking factor; b total error44 

 
Figure 56: Influence of interrogation window size on: a 

peak-locking factor; b total error44
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Figure 57: Histograms of particle image displacements for evaluating the PIV recording pair of the thermal 

convection flow with different algorithms: a CDWS; b FCTR; c CCWS44 

2.6.2 Image Deformation Methods 
While the window shifting methods discussed in the previous section have been most helpful in reducing the 

uncertainty in PIV measurements, upon the inception of digital PIV10, Huang et al.45,46 recognized that motion can 
be decomposed into translation + rotation (a function of du/dy and dv/dx) + stretch (a function of du/dx and dv/dy).  
They consequently suggested a Particle Image Distortion (PID) technique, whereby through bilinear interpolation, 
the interrogation windows were distorted in the latter two terms in order to maximize on the correlation coefficient.  
Jambunathan et al.47 also recommended a similar procedure with the exception that the second image, rather than 
each of the interrogation windows, was rebuilt using a bilinear interpolator.  While these results showed preliminary 
promising results, they were not pursued vigorously, perhaps due to the computational cost necessary for image 
deformation.  Furthermore, Huang et al. and Jambunathan et al. both reported instabilities in the convergence of 
their software; Huang et al. fixed this by smoothing their results after each iteration, while Jambunathan et al. fixed 
this by setting a condition requiring that each iterated peak calculation be larger than the previous calculation.   

Through the use of a proper weighting function, Nogueira et al.48,49,50,51,52,53 have been able to not only 
remedy the algorithm instability, but also produce a method whereby the results are more accurate and better 
spatially resolved.  In their first work, they observed that the amplification response of a top hat window, r, of the 
wavelengths being measured showed a phase reversal such that the amplification factor became negative, and were 
able to show that the algorithm instabilities seen by Huang et al. and Jambunathan et al. was due to this phase 
reversal (see Figure 58). 

 
Figure 58: 1D view of the frequency response of the moving average window48 
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They also show that for the nth iterative corrective step, the error will be 
 ( )nn iA r1ε = − , (53) 

where Ai is the original displacement amplitude to be measured.  To ensure that the error goes to zero, the condition 
0<r<2 must hold.  To correct for this phase reversal, they suggest using a symmetric weighting function 

 ( ) ij
i j

i j FW
F F, 0

2 2
, cos cos , 2

π ξ π η
ξ η μ ξ η

∞

=

= ≤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ , (54) 

which, under the restriction of 0<r<2, becomes 
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where F is the window size, and (ξ,η) denote the coordinates from the center of the window.  Graphically, the 
weighting function and its frequency response is shown in Figure 59. 

  
Figure 59: (left) Weighting function according to Equation 55; (right) 1D view of the frequency response of the 

moving average window, weighted with expression 5548 

An unfortunate new source of error of using this function is that particle image centers are shifted towards the 
highest value of the weighting function (referred to as the slippage error), thus reducing the correlation peak from 
what it should otherwise be.  To compensate for this, values of the maximum correlation coefficient are kept track 
of such that if they should decrease, they will not be further iterated.  Using a forward differencing scheme and a 
biparabolic interpolator, the correlation function  
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is used iteratively. This method is referred to as Local Field Correction PIV (LFCPIV), and when implemented 
using a multigrid approach, it is referred to as a multigrid LFCPIV.  Figure 60 shows various multigrid LFCPIV 
results for 5 iterations.  Note that 2 of the 4 LFCPIV implementations produce better results than other deformation 
algorithms that do not apply weighting functions.  

 
Figure 60: The performance of the five-iteration multigrid systems described in the text, together with those of the methods 

from Jambunathan et al (1995) (thin full line) and Scarano and Riethmuller (2000) (thin broken line).50 
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By using a central difference scheme instead of the forward difference scheme, keeping better track of the slippage 
error, and only using a single size window (64 by 64 pixels), Figure 61 shows that the uncertainties are even lower 
than those previously shown.  

 
Figure 61: Performances of LFCPIV systems for the displacement fields indicated.50 

While the weighting function in Equation 55 helps significantly reduce errors, it is by no means the only 
weighting function that can be used.  In this regard, Nogueira et al.53 studied two other weighting functions: 
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Equation 57 was chosen to test the asymmetric version of Equation 55, and Equation 58 was chosen to increase the 
frequency response for the wavelengths between F/2 and F/5.  Their uncertainties as a function of iteration are 
shown in Figure 62, where Equation 58 is seen to have the best performance.  In application to real images (see 
Figure 63), however, it can be seen that all three weighting functions perform satisfactorily, perhaps due to the 
equalizing effect of noise within the PIV images 

 
Figure 62: Comparison of algorithms. The thick horizontal line corresponds to a single-pass PIV with a 16x16-pixel 

non-weighted interrogation window. The smooth curves correspond to the iterative algorithms described in 
this section. The upper curve corresponds to Eq. 57, the middle curve to Eq. 55 and the lower curve to Eq. 
58.53 
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. 
Rather than use a bilinear interpolator, Scarano and Riethmuller54, using a multigrid approach, incorporated a 

cardinal function interpolator  
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where R(x,y) is the image intensity at the sub-pixel location (x,y), in order to avoid or limit the loss of information in 
the re-sampling process55.  The results show a significant improvement over conventional PIV and window-shifting 
PIV methods, however, not quite as good as the LFCPIV methods (see Figure 60).   

 
Figure 63: a–d Performance comparison on real images from an industrial facility. The hatched pattern indicates solid objects; 

the cross-hatched pattern indicates places where reflections and shadows suppress all data. a Vorticity plot obtained 
from conventional PIV data. The size of the interrogation window (32x32 pixels) is indicated by a dark box. b 
Vorticity plot obtained from LFC-PIV data with a 64x64-pixel interrogation window weighted by Eq. 55. c Same as 
b, but using Eq. 57. d Same as b, but using Eq. 5853 

As indicated in this discussion so far, deforming the images is a key factor in deformation PIV methods.  
Towards this end, several researchers have studied the impact of various interpolation methods on the accuracy of 
the resulting PIV vectors, and the time necessary to calculate them.  The first such study was performed by Astarita 
and Cardone56, where using synthetic noiseless images with translational shifts only, they studied the bias and 
random uncertainties of different interpolation schemes as well as the time necessary for measurement convergence.  
The interpolators studied were B-spline, FFT, Cardinal interpolator based on the sinc function, bilinear, bicubic, 
biquadratic, simplex, and discrete window offset (IDWOS) algorithms.  For the B-spline, FFT, Cardinal 
interpolators, the grid sizes tested for interpolation ranged from 2x2 through 16x16, 3x3 through 16x16, 4x4 
through 16x16, respectively.  Their results are best summarized in Figure 64, where the average bias error and total 
error are shown in Figure 64a and Figure 64b, respectively.  These averaged values were obtained by averaging the 
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absolute value of the errors in the displacement interval from zero to 4 pixels.  In general, it can be seen that the 
simpler and less computationally intensive schemes (IDWOS, bilinear, bicubic, simplex) produce results that are not 
as accurate as schemes that are more computationally intensive (B-spline, FFT, sinc with interpolation grid sizes 
6x6 through 16x16).  It is interesting to note that of the latter, the B-spline algorithms give the lowest total mean 
uncertainties in the shortest duration of time. 

  
Figure 64: Bias a and total b mean errors as a function of time for various IS. Closed circles indicate high speed methods, open 

circles BSPL IS (the number indicates the spline order), closed squares and open squares FFT and SINC 
interpolation schemes (the number indicates the stencil linear dimension), respectively.  The time scales are 
arbitrary.56 

While useful, this study did not investigate the effects of these interpolation algorithms on non-translational 
motion.  Towards this end, Kim and Sung57 further assessed various interpolation schemes by considering both 
uniform and sheared displacements.  In this study, they investigated bilinear, biquadratic, B-spline, cubic, sinc, 
Lagrange and Gaussian interpolations using artificially generated noiseless images with different sized particle 
images.  The best results for the uniform displacements are shown in Figure 65 through Figure 67.  The top plot in 
each figure shows the bias error as a function of displacement, which for all cases shows a sinusoidal behavior, 
while the bottom plot in each figure shows the random error as a function of displacement.  It is seen that the results 
show the least uncertainties for the largest particle image size studied (4.4 pixels).  For this particle image diameter, 
it is seen that the cubic (a=-0.61), Lagrange (N=6), sinc (N=10), and Gaussian (N=6) interpolation schemes have a 
maximum random error of .005 pixels.  Of these interpolation schemes, however, the maximum bias error of the 
Gaussian scheme seems to be almost twice as large as the others.   

 
Figure 65: Comparison of the best performance for each 

interpolation for uniform flow (dp = 2.2 pixel)57 

 
Figure 66: Comparison of the best performance for each 

interpolation for uniform flow (dp = 3.3 pixel)57 
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Figure 67: Comparison of the best performance for each interpolation for uniform flow (dp = 4.4 

pixel)57 

 
Figure 68: Comparison of the best performance for each 

interpolation for shear flow (dp = 2.2 pixel)57 

 
Figure 69:  Comparison of the best performance for each 

interpolation for shear flow (dp = 3.3 pixel)57

 
Figure 70: Comparison of the best performance for each interpolation for shear flow (dp = 4.4 pixel)57 
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The best results for the shear displacements are shown in Figure 68 through Figure 70.  The top plot in each figure 
shows the bias error as a function of mean displacement, which for all cases shows a decaying sinusoidal behaviour, 
while the bottom plot in each figure shows the random error as a function of mean displacement.  It is seen that the 
results show the least uncertainties for the largest particle image size studied (4.4 pixels).  For this particle image 
diameter, it is seen that the cubic (a=-0.61), Lagrange (N=6), sinc (N=10), and Gaussian (N=6) interpolation 
schemes have a maximum random error of .004 pixels.  Of these interpolation schemes, however, the maximum bias 
error of the Gaussian scheme seems to be almost twice as large as the others, similar to the uniform displacement 
results. 

Also instructive is the computational time required of the interpolation schemes.  Table 3 shows the ratio of 
the computational time to the bilinear interpolation scheme.  It can be seen that for the best performing schemes, the 
sinc (N=10) and the Lagrange (N=6), the computation times are 27.1 and 15.5 time larger than the bilinear scheme.  
While the increase in computational time due to the use of deformation methods (especially the more accurate 
schemes) may seem large and therefore a hindrance, it should be pointed out that the rapid increase of computer 
processing speeds over time and the need for generating more accurate results at higher grid resolutions easily 
justifies using such schemes. 

 
Table 3: Ratio of computation time between each interpolation scheme to the bilinear interpolation scheme for 

a single iteration57 

3 3-D VOLUMETRIC MEASUREMENTS 
While 2D PIV provides a valuable tool for studying fluid flow, it is still limited as they are confined to 

measurements within a plane.  To study complex three-dimensional flows therefore requires methods that will allow 
measurements of three-component velocity vectors within a volume.  Furthermore, if such studies are transient 
phenomena, then these methods must allow for sequential measurements through time.  While several techniques 
have been developed that acquire three-dimensional data by scanning the light sheet through the desired volume 
(Brucker58,59), to date, two techniques have stood out that are capable of true three-dimensional measurements.  The 
first technique employs multiple cameras while the second employs holographic methods.   

The hardware necessary for data acquisition is almost identical to those of PIV systems.  The important items are 
bulleted below: 

• The tracer particles used should be small enough to accurately follow the flow, yet large enough to provide 
sufficient light scattering.  The particle response time as described by Equation 2 can be used to determine 
appropriate sizes of particles. 

• The illumination source should be pulsed in order to freeze the particle motions.  Both lasers and strobe lights 
have been successfully used.  The pulses should be synchronous with the camera for proper exposure and 
therefore correct data acquisition.  The illumination should be such that there is homogeneous illumination 
throughout the interrogation volume.  The illumination spectra should be within the CCD’s detectable 
spectral range.  The illumination source should be bright enough to provide a good signal, especially for 
small tracers. This is more important for volumetric methods than for planar methods when using lasers, 
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since the laser beam must be spread into a volume for the volumetric methods, rather than a sheet for the 
planar methods.   

• Digital high-resolution cameras (1K*1K or 2K*2K) are preferred in order to image higher number of 
particles, and also to allow for automated processing.  While film provides higher resolution, its methods are 
extremely time-consuming for processing. 

• Acquisition of digital images is done through the use of a framegrabber.  Images can be stored onto RAM in 
real-time, but are limited to the maximum amount of RAM that can be put onto the host computer.  Images 
can also be stored onto a real time disk.  Typically disk arrays with special configurations using RAID 
controllers can be used to acquire massive amounts of data.  If analog cameras are used, either laser disc 
recorders or VCRs are necessary for acquisition.  For processing, however, these images must be digitized, 
most often not at as high a resolution or signal quality as CCDs provide, thereby degrading the quality of the 
digitized image. 

The limitation of holographic method is that this method can only provide a snap shot of the velocity field at only a 
single point in time, i.e. it cannot provide a sequence of data fields through time as do the multi-camera systems.  In 
the following section one of the multi-camera systems, the Three-Dimensional Defocusing Particle Image 
Velocimetry (3DDPIV) method, is presented and discussed. 

 
Figure 71: Diagram a Defocusing concept graphically demonstrated: a standard imaging set-up with aperture on-

axis; b defocusing set-up with two off-axis apertures. Point A focuses from the reference plane onto A’ 
on the CCD plane; point B focuses behind the CCD plane at point B’’’, leaving two slightly blurred 
images on the CCD plane (B’ and B’’) at a distance b apart; point C focuses further behind the CCD 
plane at point C’’’, leaving two slightly larger blurred images on the CCD plane (C’ and C’’) at a larger 
distance b’ apart (adapted from Willert and Gharib (1992) and Pereira and Gharib (2002)).63 

3.1 Three-Dimensional Defocusing Particle Image Velocimetry (3DDPIV) method 
The most recent addition to the true 3D measurement methods is Defocusing Digital Particle Image 

Velocimetry.  The concept was initially introduced by Willert & Gharib60, and further developed and implemented 
by Pereira, et al.61, Pereira & Gharib62, and Kajitani & Dabiri63.  Unlike the previous method, which is based on 
triangulation, this method is based on imaging with a single lens within its defocused range.  This system differs 
from 3D particle tracking methods in that the optics in this method share one optical axis, consistent with the 
original concept, thus eliminating the need for complex schemes to identify particles through triangulation.  Out-of-
plane to in-plane error ratios using this methods are 4-6, with in-plane errors similar to those found in planar PIV 
techniques. 
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3.1.1 The Defocusing Principle  
This method is best described by using a two-dimensional representation of the imaging system shown in 

Figure 71a, which will demonstrate the defocusing concept used to acquire 3D information.  Rays from point A focus 
onto point A′ on the image plane.  Rays from B (off the reference plane), while still traveling through the aperture, 
focus away from the image plane onto C, leaving a blurred image, B′, on the image plane.  Using the blurring, one 
can get information about a particle’s position in space.  In Figure 71b, the aperture is replaced with another that has 
two apertures equally off-axis.  This time, rays from A travel through both apertures, and are focused onto A′.  
Likewise, rays from B, focus off the image plane, onto B′′′.  Because the apertures are off-axis, as the rays converge 
onto point B′′′, they leave two blurred spots on the image plane, B′ and B′′.  The separation between B′ and B′′ 
(denoted by b) is a function of the distance B from the reference plane, thus providing depth information.  If a 
particle located at B were to move farther from the reference plane to C, rays from this particle would focus off the 
CCD plane, onto C′′′, leaving two blurred spots on the CCD plane, C′ and C′′, separated by a distance b′ that is 
larger than b.  This geometry therefore shows that the particle image separation on the CCD plane gets larger as the 
particle moves farther away from the reference plane, thus providing a way to gauge the depth location.  

3.1.2 The Descriptive Equations  
Given this optical setup, a particle’s position can be shown to be 
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where M = geometrical magnification, d = distance between the centers of the apertures, and L = distance from the 
aperture plane to the reference plane, (X,Y,Z) = the coordinates of the point B in space, and (xTR,yTR), (xTL,yTL) and 
(xB,yB) = the blurred image coordinates for the top right, top left, and bottom coordinates, respectively, ζ = the 
distance from the center of this equilateral triangle to any of the particle’s images that identify any vertex of the 
equilateral triangle (i.e. (xTR,yTR)), and γ = the radial distance from the optical axis to each of the apertures.  The 
sensitivity of this system to detect changes in the depth location of particle is given by  
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b
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Z KZ MLd

∂
= − =

∂ 2

1 1
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In practice, rather than using two pinholes, three pinholes positioned in the shape of an equilateral triangle 
are used.  For images filled with thousands of particles, this allows more precise identification of particles.  Also, 
for good system sensitivity, the aperture distance, d, must be large, which can be achieved by decreasing K, thereby 
increasing Zb ∂∂ .  Typically, experimental setup requirements necessitate system sensitivities such that aperture 
separations should be larger than the diameter of the lens.  This poses a problem as obtaining custom-made large 
lenses can be quite costly.  Furthermore, triply-exposing a CCD can cause it to overcrowd rapidly, thereby only 
allowing limited number of particle exposures.  Therefore, rather than constructing the camera with one lens, it is 
possible to construct the camera with 3 separate imaging systems as shown in Figure 72.  This solves the problem of 
over-saturating a single CCD with multiple images of many particles, while using off-the-shelf lenses for the camera 
design.    
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Figure 72: Implementation of 3D Defocusing PIV allowing for use of off-the-shelf hardware items63  

 
3.1.3 Application to flow around a propeller 

In order to test the capability of the 3DDPIV system, the flow around a propeller was imaged and mapped.  
Instead of using reflective particles as is done in 2D PIV systems, small bubbles (~260μm diameter) were used as 
flow tracers.  A two-blade propeller (67 mm diameter) was rotated at 12 revolutions per second, achieving a tip 
velocity of 2.52 m/s within a 1 m3 water tank.  After phase averaging 50 velocity vectors, a three-dimensional 
velocity field was achieved (see Figure 73). 

 
Figure 73: Three-dimensional velocity field around a rotating propeller.  3DDPIV images contain 1x104-2x104 

bubbles.  The imaged volume is 200x200x400 mm3 resulting in 72963 vectors (33*33*67 voxels).64 

Once this velocity field was obtained and outliers were corrected for, massless particles were then 
numerically injected into this velocity field initially in a ring formation (Figure 74a) at one diameter upstream of the 
propeller, and the evolving pathlines were then observed Figure 74b,c. 
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 a b c 

Figure 74: Pathlines of bubbles around the propeller61 

4 Concluding Remarks 
While the fluid dynamicist’s dream of being able to measure complex, three-dimensional turbulent flow 

fields globally with very high spatial and temporal resolution is still far from being fully realized, the rapid 
developments in the various hardware and algorithmic implementations of two-dimensional cross-correlation PIV 
have allowed for significant insights into fluid mechanics that would have otherwise been most difficult.  Two-
dimensional cross-correlation PIV methods have allowed for fluid flow measurements ranging from the 
micrometers per seconds in micro-scale flows to supersonic speeds, in academic research to industrial applications.  
In addition, while single-point measurements only allowed inference to vorticity and strain rates, PIV, especially its 
implementation using image deformation, now allows the fluid dynamicist to directly measure these quantities 
globally and accurately.  Most exciting is the emergence of three-dimensional methods that allow for volumetric 
studies of time-evolving flows, which will bring us yet a step closer to the fluid dynamicist’s dream.   
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