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1 Introduction

When do dynamic models have unique solutions? Answering this question is crucial

in macroeconomics. Models with unique solutions make clear, robust predictions.

When models have multiple solutions, inference is more challenging, although these

models can still be useful for understanding dynamics in the presence of extrinsic

volatility. The question has practical importance. For example, the main motivation

for modern monetary policy’s “Taylor Principle” is to eliminate multiplicity. For-

tunately, whether models have unique solutions is known exactly when agents have

rational expectations: the Blanchard-Kahn condition (Blanchard and Kahn, 1980) is

necessary and sufficient for a unique solution to exist.

However, when expectations are nonrational, the answer changes. The Blanchard-

Kahn condition only applies to full information rational expectations (FIRE) models.

Under some types of behavioral expectations, models that have unique solutions un-

der FIRE will have multiple solutions. For other types of behavioral expectations,

models that would have multiplicity under FIRE will have a unique solution. Behav-

ioral expectations can fundamentally change equilibrium properties. The traditional

Blanchard-Kahn condition cannot necessarily be applied, even if the behavioral model

can be rewritten as a FIRE model.

To resolve these issues, I introduce a Behavioral Blanchard-Kahn condition. Like

the original, it is a condition on a model’s generalized eigenvalues that ensures a

unique solution exists: the number of non-predetermined variables must equal the

number of unstable eigenvalues. The behavioral modification is that “unstable eigen-

values” are now defined as those that are larger in magnitude than the spectral radius

of the expectation operator. For rational expectations, the spectral radius is one,

implying the classic Blanchard-Kahn condition. But different types of behavioral

expectations feature other values.

After proving that the main Behavioral Blanchard-Kahn condition is sufficient

for a unique solution to exist, I explore when it is necessary. It almost always is

under rational expectations, but this is not true more generally. Instead, I prove that

solutions are unique if and only if the Behavioral Blanchard-Kahn or a Sunspot Ad-

missibility condition hold. When a model is underdetermined, rational expectations

models feature a multiplicity of sunspot equilibria. But crucially, many behavioral

expectations do not admit sunspot equilibria, while others only admit them for a sub-

2



set of models. This is because sunspot equilibria are driven by self-fulfilling forecast

errors. But with behavioral expectations, arbitrary forecast errors can be challenging

or even impossible to construct.

These results are valuable for understanding how behavioral expectations affect

the theoretical properties of equilibria, but they are also useful for practitioners. Many

behavioral models can be rewritten in terms of a FIRE model; typically, practitioners

will do so, and then check the traditional Blanchard-Kahn condition with a computer.

Changing the type of behavioral expectation – or even just adjusting its parameter

values – can eliminate or attain multiplicity. How can one know ex ante whether

changing assumptions or parameterization will affect equilibrium uniqueness? The

Behavioral Blanchard-Kahn condition provides the answer.

The theoretical results also have practical applications. For example, I demon-

strate that a simple asset pricing model with standard parameters can feature multiple

equilibria and extrinsic volatility for a class of behavioral expectations. In this setting,

government policy may be needed to stabilize the market. Conversely, in other set-

tings government policy designed to resolve a rational expectations multiplicity may

be unnecessary. Gabaix (2020) argues that this is the case in the New Keynesian

model, for a sufficiently large behavioral bias. I generalize this result, demonstrat-

ing that equilibria are unique under an interest rate peg for a variety of behavioral

expectations, including all backwards-looking heuristics.

The main results in this paper apply to models where agents are sophisticated :

when forecasting, they form expectations over the equilibrium time series. However,

there is not consensus in the literature that this an appropriate assumption. Alter-

natively, agents might be naive: they forecast as if rational expectations will hold

in the future. I adapt the main theorem for these types of models too; if the tradi-

tional Blanchard-Kahn condition holds for the rational version of a model, then the

corresponding model where naive agents have behavioral expectations is guaranteed

to have a unique solution.

After exploring how determinacy depends on the spectral radius and eigenvalues

of expectations operators in general, I characterize these features for a variety of

behavioral expectations appearing in the literature. Figure 1 reports how equilib-

rium uniqueness relates to the traditional Blanchard-Kahn condition for a subset of

these expectations. The uniqueness properties vary dramatically, but this is not a

case where “anything goes”: each type of behavioral expectations implies falsifiable
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Figure 1: Multiplicity and the Traditional Blanchard-Kahn Condition

Notes: The diagram classifies a non-exhaustive variety of behavioral expectations based on
equilibrium uniqueness when the traditional Blanchard-Kahn (BK) condition holds or fails. Some
types of expectations for which equilibria are possibly unique when the condition fails may also
feature possible multiplicity even if the condition holds. For a smaller subset of expectations,
equilibria are always unique if they exist. Each type is defined and classified in Section 7, except
for “Naive Agents” who mistakenly believe that rational expectations will hold in the future
(Section 6).

predictions, and has exact conditions for when equilibria are unique. In all cases, I

derive their spectral properties analytically, but also describe how the spectral radius

can be calculated numerically if an analytical solution is impossible. Furthermore, I

show how to represent a simple subset of incomplete information models and dynamic

beauty contests as behavioral expectations, and describe their spectra too.

The existence and uniqueness theorems apply to a large class of behavioral expec-

tations. But there are some restrictions. First, they must be linear, which applies to

most behavioral expectations in the literature, but not all. Second, I focus on station-

ary models, which excludes behavioral learning processes, as in Evans and Honkapohja

(2012). Third, the expectations must be “series-agnostic,” so that agents apply the

same expectation operator to all time series in the model. Some evidence suggests

that forecasts of different macroeconomic series feature different biases (Bordalo, Gen-

naioli, Ma, and Shleifer, 2020), which may not fit in my framework. Moreover, my

representation can only account for limited heterogeneity; if agents are not symmet-
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ric, then the model must be able to be written in terms of average forecasts or some

other single expectation. This works for some models with informational heterogene-

ity (Woodford, 2003) or behavioral heterogeneity (Branch and McGough, 2004), but

will not apply to heterogeneous expectations in general.

This paper joins a large literature that derives existence and uniqueness condi-

tions for specific models without rational expectations. Some are special cases of this

paper’s general results, while others have features that do not fit in my framework.A

growing literature explores how specific types of behavioral expectations affect deter-

minacy in the New Keynesian model. Some types of behavioral expectations expand

the region of monetary policy parameters that ensure determinacy; this includes the

cognitive discounting in Gabaix (2020), the heuristic switching in Bertasiute, Mas-

saro, and Weber (2020), and the dispersed information structure in Gallegos (2022).

In other cases, behavioral expectations reduce the determinacy region, so that a stan-

dard Taylor rule is not reactive enough; this is the case for heterogeneous expecta-

tions models studied in Branch and McGough (2009), Massaro (2013), and Anufriev,

Assenza, Hommes, and Massaro (2013). Other expectation-formation frictions can

eliminate multiplicity entirely, as with the level-k thinking studied by Garćıa-Schmidt

and Woodford (2019) and Farhi and Werning (2019), or the imperfect memory in An-

geletos and Lian (2021).

The remainder of the paper is organized as follows. Section 2 describes how to

represent behavioral expectations as infinite-dimensional linear operators. Section 3

presents the main theorems. Section 4 demonstrates why the Behavioral Blanchard-

Kahn condition delivers uniqueness in a simple asset pricing model. Section 5 ex-

amines determinacy in the behavioral New Keynesian model. Section 6 considers

existence and uniqueness when agents are naive rather than sophisticated. Section 7

characterizes the spectra of many types of behavioral expectations.

2 Expectations as Operators and Other Notation

In this section I describe how to define a general class of behavioral expectations

as infinite-dimensional operators. I discuss the spectral radius, a characteristic of

operators that determines whether dynamic models with behavioral expectations have

unique solutions.
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2.1 Information Bases and Behavioral Expectations

Consider an arbitrary demeaned stationary time series Xt. Assume that the time

series can be represented as a moving average in terms of some underlying mean-zero

white noise process ωt with square-summable coefficients Xj:

xt =
∞∑
j=0

Xjωt−j (1)

= X(L)ωt

where X(L) is the corresponding lag-operator polynomial. The coefficients Xj are

m×n matrices, where m is the dimension of the time series Xt, and n is the dimension

of the white noise process ωt.

The white noise ωt represents stochastic shocks. Crucially, when considering ex-

pectations, ωt is assumed to be in a forecaster’s information set at time t and beyond.

This assumption sidesteps concerns about the invertibility of X(L) and fundamen-

talness of the time series xt.

Different forms of expectations are indexed by b. The type-b expectation of a time

series h periods into the future is written as Ebt [Xt+h]; when written without a b, Et
indicates the rational expectation. The subscript t denotes that the expectation is

conditional on the period t information set (i.e. all shocks ωs for s ≤ t.) Regardless of

the type of behavioral expectations, I assume that agents perfectly forecast variables

in their information set:

Ebt [Xt] = Xt

Thus if an agent builds a factory today, they will expect to have that factory to-

morrow. This assumption is so that laws of motion hold with equality even when

expectations are applied. But it introduces an additional challenge: behavioral ex-

pectations become nonlinear.
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2.2 Time Series as Vectors and Expectations as Operators

A stationary time series of form (1) can be represented as an ∞× n block vector ~X,

where n is the dimension of the white noise ωt

~X ≡


X0

X1

X2

...


I consider behavioral expectations that are linear in one-period-ahead time series.1

When this is true, an arbitrary behavioral expectations operator can be represented

as an infinite dimensional matrix – technically, a bounded linear operator – which

operates on infinite dimensional vector spaces (`2 in this case).

For b-type expectations with a one period horizon, i.e. Ebt [Xt+1], the corresponding

operator Eb is defined by its block matrix representation

Eb =


Eb,0,0 Eb,0,1 Eb,0,2 ...

Eb,1,0 Eb,1,1 Eb,1,2
. . .

Eb,2,0 Eb,2,1 Eb,2,2
. . .

...
. . .

. . .
. . .

 (2)

for conformability, the blocks Eb,i,j must be m × m. When written without a b, E
denotes the rational expectation operator.

I assume throughout that expectations are series-agnostic, which means that how-

ever the expectations operate on a single time series is applied to all time series

symmetrically.2 For example, if agents forecast GDP with a form of behavioral ex-

pectations, they must also forecast inflation with the same form of behavioral expec-

tations. Mathematically, this assumes that the expectations operator commutes with

1Section 7 demonstrates that many popular types of expectations fulfill this property. I also point
out some examples that do not, and consider linear analogs.

2This is equivalent to assumption (A3) in Branch and McGough (2018), and Lemma 1 in Gabaix
(2020). Once consequence of the series-agnostic property is that this model structure can only
accommodate certain forms of heterogeneity; the macroeconomic model must be able to be written
in terms of a single expectation operator. In some cases Eb

t can represent average expectations, such
as in Mankiw and Reis (2002) or Woodford (2003) where agents have heterogeneous information, or
in Branch and McGough (2009) where different types of agents form expectations in different ways.
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arbitrary matrices, which implies that the Eb,i,j blocks are proportional to the m×m
identity:

Property 1 Series-agnostic expectations of type b satisfy:

1. For any conformable matrix B,

Ebt [BXt+h] = BEbt [Xt+h]

2. The general operator representation Eb has blocks

Eb,i,j = αb,i,jI

for some scalar αb,i,j

The series-agnostic property is useful for proving the main theorems. Without the

property, it is still possible to represent expectations as a general operator as in

equation (2), but characterizing general properties of equilibrium becomes challenging

without imposing additional structure on the expectations or the economic model.

In order to simplify notation, when finite matrices appear in operator equations,

they represent the infinite operator with the finite matrix repeating on the main block

diagonal. Thus for any conformable matrix B:

B ~X =


BX1

BX2

BX3

...

 BEb =


BEb,0,0 BEb,0,2 BEb,0,2 ...

BEb,1,0 BEb,1,2 BEb,1,2
. . .

BEb,2,0 BEb,2,2 BEb,2,2
. . .

...
. . .

. . .
. . .


Similarly, when scalars appear in operator equations, it is implied that they are

multiplied by the identity, e.g. 2 + E is equivalent to 2I + E .
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The lag operator L has a block Toeplitz representation:

L =



0 0 0 ...

I 0 0
. . .

0 I 0
. . .

0 0 I
. . .

...
. . .

. . .
. . .


(3)

The lag operator shifts vectors by one block. It is an isometry, left-invertible by its

transpose, but not right-invertible:

L′L = I 6= LL′

2.3 The Spectral Radius

Why is it crucial to consider behavioral expectations as infinite-dimensional opera-

tors? Because one well-understood characteristic of an operator is its spectral radius,

and in many cases the necessary and sufficient condition for a model to have a unique

solution depends on the spectral radius of the expectations operator.

The spectral radius of a bounded linear operator is the supremum of the absolute

values of its spectrum:

Definition 1 The spectral radius of an operator r(Eb) is

r(Eb) ≡ sup |λ|

s.t. (λ− Eb)−1 does not exist

I denote the spectral radius of an expectation operator by r(Eb). In this paper, the

most useful property of the spectral radius is:

Property 2 For a matrix B with largest magnitude eigenvalue |λB| < r(Eb)−1 and

series-agnostic expectation operator Eb, the operator I −BEb is invertible.

Proof: Appendix B.1

The spectral radius is straightforward to derive analytically for many forms of

expectations, which I demonstrate in Section 7. And even in cases where an analytical

expression is impossible, it is simple to calculate numerically (Section 7.2).
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In many cases, an operator’s spectral radius is the magnitude of the largest eigen-

value, but sometimes operators have no eigenvalues.3 If it exists, an eigenvalue λb of

an operator Eb has associated eigenvector ~y such that λb~y = Eb~y. The eigenvector is

the vector representation of the associated eigenseries :

Definition 2 The time series yt is an eigenseries of type b expectations if there

exists an eigenvalue λb such that

λbyt = Ebt [yt]

The eigenseries of behavioral expectations are crucial for determining whether models

feature sunspot equilibria.

2.4 Recursive Expectations and the Spectral Radius

The spectral radius is used in the main existence and uniqueness theorems to de-

termine when a recursive expectational equation has a unique fixed point. Before

moving on to the general uniqueness theorems, it is useful to prove an intermediate

step that depends on the spectral radius.

Let Ebt,t+j[xt+j+1] denote the iterated expectation

Ebt,t+j[xt+j+1] ≡ EbtEbt+1Ebt+2...Ebt+j [xt+j+1]

Ebt,t+j[xt+j+1] appears in the following Lemma, because the law of iterated expecta-

tions does not always apply to behavioral expectations.4

Lemma 1 If the matrix B has largest magnitude eigenvalue |λB| < r(Eb)−1, the time

series yt is stationary, and the time series xt satisfies the recursive equation

xt = Ebt [yt+1] +BEbt [xt+1]

3This is the case for the lag operator, as well as for many of the heuristic expectations considered
in Section 7.

4In Section 6, I consider a “naive” alternative where agents future exogenous variables instead of
endogenous forecasts; in such a model, iterated behavioral expectations do not appear.
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then xt is stationary and given by

xt =
∞∑
j=0

BjEbt,t+j[yt+j+1]

Proof: Appendix B.2

3 Uniqueness in a General Macroeconomic Model

In this section I define a general linear macroeconomic model with behavioral expec-

tations. I define the main Behavioral Blanchard-Kahn condition and prove that when

it is satisfied, a unique solutions exists. Then I characterize when the condition is

necessary.

3.1 Notation and Definitions

Consider a general linear dynamic stochastic macroeconomic model of the following

form. The equilibrium conditions of the model are represented as a single matrix

equation:

Ebt [BX1Xt+1] = BX0Xt +BY Yt (4)

Xt =

(
Kt−1

Ct

)
is a n × 1 vector of endogenous variables. nK of the variables

are predetermined state variables Kt−1, while nC = n − nK are control variables

Ct. Yt is a vector of exogenous mean-zero stochastic processes that are realized at

time t; Yt = Y (L)ωt is a moving average in the exogenous white noise ωt. The

matrices BX0, BX1, and BY encode the equilibrium conditions of the model.5 The

state variable component of Xt+1 is known exactly at time t, so the expected vector

Ebt [Xt+1] represents

Ebt [Xt+1] =

(
Kt

Ebt [Ct+1]

)
5This is a general form for most linear macroeconomic models, but some caution is required when

adopting behavioral expectations. The modeler cannot be as cavalier about how Eb
t [BX1Xt+1] is

constructed as they can with rational expectations. This is because behavioral expectations are
only piecewise linear, and many types do not obey the law of iterated expectations. Theory must
inform which variables agents forecast. For example, are asset prices determined by forecasts of
tomorrow’s asset prices? Or by forecasts of the stream of all future dividends? When the law of
iterated expectations fail, the answers are not the same.
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for any form of expectations, which are always conditional on the information set

{ωt−j}∞j=0.6

The generalized Schur decomposition of the coefficient matrices is denoted by

BX0 = QT0Z BX1 = QT1Z

where Q and Z are unitary, T0 and T1 are upper triangular, and the diagonal of T0 is

arranged so that the generalized eigenvalues are in increasing order. Let φi denote the

ith generalized eigenvalue of the model, i.e. the ratio of diagonal elements T0,i,i/T1,i,i.

If T1,i,i is zero while T0,i,i is nonzero, the generalized eigenvalue is said to be infinite.

If both are zero, then the generalized eigenvalue is said to be undefined.

The generalized eigenvalues with magnitude |φi| < 1 are labeled the “stable”

eigenvalues. Let nS denote the number of stable eigenvalues in a model. The gen-

eralized eigenvalues with magnitude |φi| > r(Eb) are labeled “unstable”. nU denotes

the number of “unstable” eigenvalues in a model.

Partition the matrices into blocks, separating the first n−nU dimensions from the

remaining nU dimensions.7 Denote the partitions as:

T0 =

(
T0,S T0,SU

0 T0,U

)
T1 =

(
T1,S T1,SU

0 T1,U

)
Z =

(
zSK zSC

zUK zUC

)

The columns of Z are partitioned into the first nK dimensions and the remaining nC

dimensions.

I make four regularity assumptions about the model, following Klein (2000) and

Blanchard and Kahn (1980).

1. zUC is full rank.

2. BX0 and BX1 have no undefined generalized eigenvalues.

3. BX0 and BX1 have no generalized eigenvalues in the interval [r(Eb), 1].

6The assumption that ωt includes the fundamental shocks driving the exogenous state vector Yt
rules out some sources of potential sunspot equilibria, including information frictions with endoge-
nous signals (Angeletos and Werning, 2006) or model misspecification with hidden state variables
(Branch, McGough, and Zhu, 2022). Still, Appendix D.4 demonstrates that some simple information
frictions such as forecasting from signals with exogenous noise, are isomorphic to other behavioral
expectations that do fit in this framework.

7It must be that n−nU ≥ nS , but no assumption is made to rule out the case where n−nU > nS
and some eigenvalues are neither stable nor unstable, which is possible if 1 < r(Eb).
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4. The exogenous process Yt is “behavioral-regular”.

The first assumption rules out the problem of “decoupled” models (Sims, 2007) by

ensuring that control variables can be mapped to the unstable block.8 The second

assumption rules out the inclusion of redundant equations that do not determine Xt

(Sims, 2002). The third assumption generalizes one made by Klein (2000); under

rational expectations, this only implies that the model has no unit roots. However,

when the spectral radius is not one, this assumption potentially rules out models with

generalized eigenvalues that are both stable and unstable.9 The fourth assumption

rules out rare edge cases where a forward-looking equation can be solved by both

a control and a state variable. Blanchard and Kahn (1980) implicitly make this

assumption in order for their condition to be necessary for existence; Appendix A

defines the generalized “behavioral-regular” property and describes why it useful.

Definition 3 A stationary solution is a stationary finite-variance time series Xt

that is linear in current and past realizations of ωt, and solves equation (4) for all t.

Because the vector Xt+1 may contain state variables that are known at time t, the

expectations operator cannot be applied to it uniformly, so the Klein (2000) method

is difficult to generalize directly. Instead, it is useful to follow the approach in Sims

(2002), whereby Xt+1 is divided into terms known at time t and forecast errors that

are zero in expectation.

Let ηt denote the n× 1 vector of forecast errors of Xt:

ηt ≡

(
0

Ct − Ebt−1[Ct]

)

and let χt denote the n× 1 vector of states and forecasts of controls:

χt ≡

(
Kt

Ebt [Ct+1]

)
8This rules out the auxiliary equation approach (Bianchi and Nicolò, 2021) to satisfy the

Blanchard-Kahn condition in an indeterminate model.
9What happens if this assumption is violated? If eigenvalues are in the interval [r(Eb), 1] models

can become internally inconsistent: variables may be solved recursively both forwards and backwards
with conflicting outcomes. This does not necessarily invalidate a model, but additional a priori
assumptions must assign the eigenvalues in [r(Eb), 1] as either stable or unstable. For example,
Gabaix (2020) has eigenvalues in the interval [r(Eb), 1] and assigns them to be unstable, so that
there are as many unstable eigenvalues as control variables.
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A solution to the macroeconomic model satisfying Definition 3 is a pair of stationary

processes ηt and χt satisfying equation (4), rewritten in terms of ηt and χt:

BX1χt = BX0χt−1 +BX0ηt +BY Yt (5)

such that ηt is the behavioral forecast error, i.e. forecasts must also satisfy the

expectational equation:

BX1Ebt−1[χt] = BX0χt−1 +BYEbt−1[Yt] (6)

3.2 A Sufficient Condition for a Unique Solution

Condition 1 (Behavioral Blanchard-Kahn) The numbers of non-predetermined

control variables nC, predetermined state variables nK, unstable nU and stable nS

generalized eigenvalues must satisfy

nC = nU

and

nK = nS

This condition reduces to the sufficient conditions in Blanchard and Kahn (1980) and

Klein (2000) under rational expectations, where the spectral radius is r(E) = 1.

Theorem 1 If a macroeconomic model satisfies the Behavioral Blanchard-Kahn con-

dition, then it has a unique stationary solution.

Proof. Apply the Schur decomposition to equations (5) and (6):

T1Zχt = T0Zχt−1 + T0Zηt +Q′BY Yt (7)

T1ZEbt−1[χt] = T0Zχt−1 +Q′BYEbt−1[Yt] (8)

The first nS dimensions of the operator equation (7) are the “stable block”, while

the remaining nU dimensions are the “unstable block”. To simplify these blocks,

decompose the following vectors into the first nS and the remaining nU dimensions:(
χSt

χUt

)
≡ Zχt

(
ηSt

ηUt

)
≡ Zηt

(
Y S
t

Y U
t

)
≡ Q′BY Yt (9)
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χUt is determined by the unstable block of equation (8):

T1,UEbt−1[χUt ] = T0,Uχ
U
t−1 + Ebt−1[Y U

t ] (10)

Lemma 1 implies that this recursive equation has a unique fixed point χUt , which is

given by

χUt = −
∞∑
j=0

(
T−1

0,UT1,U

)j
T−1

0,UE
b
t,t+j[Y

U
t+j+1] (11)

With χUt solved by equation (11), the unstable block of equation (7) implies a

unique solution for ηUt :

ηUt = T−1
0,UT1,Uχ

U
t − χUt−1 − T−1

0,UY
U
t (12)

ηSt is solved directly from ηUt and the definitions

(
ηSt

ηUt

)
= Zηt, Z =

(
zSK zSC

zUK zUC

)
,

and ηt =

(
0

Ct − Ebt−1[Ct]

)
:

(
ηSt

ηUt

)
=

(
zSK zSC

zUK zUC

)(
0

Ct − Ebt−1[Ct]

)
(
ηSt

ηUt

)
=

(
zSC(Ct − Ebt−1[Ct])

zUC(Ct − Ebt−1[Ct])

)
zUC is full rank, so nU = nC implies that it is invertible and the forecast errors can

be found by

Ct − Ebt−1[Ct] = z−1
UC η̃

U
t

ηSt is uniquely solved by

ηSt = zSCz
−1
UCη

U
t (13)

Finally, solutions for χUt , ηUt , and ηSt allow the remaining unknown χSt to be solved

from the stable block of equation (7):

T1,Sχ
S
t + T1,SUχ

U
t = T0,Sχ

S
t−1 + T0,SCχ

U
t−1 + T0,Sη

S
t + T0,SCη

U
t + Y S

t (14)
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rearrange for χSt :

χSt = T−1
1,ST0,Sχ

S
t−1 + Θt (15)

where

Θt ≡ −T−1
1,ST1,SUχ

U
t + T−1

1,ST0,SCχ
U
t−1 + T−1

1,ST0,Sη
S
t + T−1

1,ST0,SCη
U
t + T−1

1,SY
S
t

The nS smallest magnitude generalized eigenvalues are are also the eigenvalues of

T−1
1,ST0,S. The Behavioral Blanchard-Kahn condition says that these eigenvalues are

all stable, implying that
(
I − T−1

1,ST0,SL
)

is invertible:

χSt =
(
I − T−1

1,ST0,SL
)−1

Θt (16)

which is the unique solution for χSt .

Z is unitary, so the time series Xt that uniquely solves the macroeconomic model

(4) is recovered by

Xt = χt−1 + ηt = Z∗

(
χSt−1

χUt−1

)
+ Z∗

(
ηSt

ηUt

)

The proof of Theorem 1 is constructive; it proves a unique solution exists while

also providing a method for calculating the solution.

3.3 Necessary Conditions for Uniqueness

The traditional Blanchard-Kahn condition is not just sufficient; it is necessary for

a rational expectations solution to be unique. This is also true for the Behavioral

Blanchard-Kahn condition if the model satisfies an additional property: Sunspot Ad-

missibility. This section discusses this additional condition and introduces Theorems

2 and 3, which state precisely when model solutions are unique and when the Behav-

ioral Blanchard-Kahn condition is necessary.

3.3.1 Sunspot Admissibility

The Sunspot Admissibility condition (introduced below) identifies when multiple equi-

libria are possible. This condition is redundant under rational expectations, but rel-
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evant when introducing behavioral expectations. The condition identifies when an

underdetermined model (nC > nU) admits multiple equilibria. Sunspot Admissibility

is always satisfied for rational expectations, where it is straightforward to construct

sunspot equilibria. “Sunspots” are forecast errors, which can be any white noise

process for rational expectations. But sunspots are nontrivial for many types of be-

havioral expectations; the forecast errors are rarely white noise, and can depend in

complicated ways on the process for forecasts.

Some additional notation is necessary to introduce Sunspot Admissibility. Eigen-

decompose the matrix T−1
1,ST0,S = Q−1

S ΛSQS so that ΛS is the diagonal matrix of

stable eigenvalues, including zeros. The regularity assumption implies that zUC has

rank nU , so select from zSC the nC − nU rows z� such that

(
z�

zUC

)
is invertible.

� denotes the “sunspot” dimensions of Xt. The (nC − nU) × nS matrix s′� extracts

these dimensions from among the stable dimensions.

Condition 2 (Sunspot Admissibility) There exists a bounded nonzero vector ~v

such that

s′�Q
−1
S (ΛS − Eb) (I − ΛSL)−1QSs�~v = 0

This condition is possible to check for a number of types of behavioral expectations

without knowing anything else about the economic model. For example, under ra-

tional expectations, Sunspot Admissibility is always satisfied. For some heuristics, it

is never satisfied. In other cases, Sunspot Admissibility is model dependent, but can

be checked without first solving the model, by determining if the model is “simply

stable.”

3.3.2 Simple Stability

Definition 4 A model is simply stable if there exists a square matrix ϕ such that

any column of QSs�ϕ has a single non-zero entry.

In some cases, this property is easy to check. If a model has at most one stable eigen-

value, then it necessarily is simply stable, because QSs� is a scalar. For example, this

implies that the three-equation Behavioral New Keynesian model studied in Section

5 is simply stable for all types of expectations. More generally, simple stability is

straightforward to check from the Schur decomposition.

17



Why is this property useful? Sunspot Admissibility is easily satisfied when the

eigenvector of Eb associated with eigenvalue λ corresponds to an AR(1) process with

autocorrelation λ. This is true in some cases (e.g. rational expectations) but typically

an eigenvector of Eb is some process that depends on the eigenvalue in some other way.

In these cases, it may be impossible to find a sufficient ~v if each sunspot dimension is

associated with multiple distinct eigenvalues in ΛS. However, if QS is simple enough

so that at least one sunspot dimension can be associated with a single stable eigen-

value, then behavioral expectations with exotic eigenvectors can still satisfy Sunspot

Admissibility. Proposition 1 formalizes this logic. Let (QSs�)i indicate any column

with only one nonzero entry, and let λ�i denote its associated eigenvalue in ΛS.

Proposition 1 If there exists a λ�i that is an eigenvalue of Eb, then a simply stable

model satisfies Sunspot Admissibility.

Proof: Appendix B.4

Proposition 1 makes Sunspot Admissibility straightforward to evaluate even for

the ambiguous cases, i.e. the types of expectations for which the condition neither

always holds nor never holds. Evaluating whether the Sunspot Admissibility condition

holds is valuable because it allows a practitioner to apply Theorem 2.

3.3.3 Sunspot Admissibility and Multiplicity

Theorem 2 Consider a model with at least one solution. The model has multiple

solutions if and only if nU < nC and Sunspot Admissibility is satisfied.

Proof: Appendix B.5

The proof is constructive; if any solution exists, it provides a method to derive

any number of additional “sunspot” solutions. Theorem 2 is useful for economists

who would like to determine exactly whether their solvable model has multiplicity. If

Sunspot Admissibility fails to hold or nU ≥ nC , then they are assured that there is

no multiplicity. Otherwise, then there must be multiple solutions.

A corollary is the statement from the introduction:

Corollary 1 A solution is unique if and only if the Behavioral Blanchard-Kahn or

Sunspot Admissibility conditions hold.
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Proof: Appendix B.6

While Theorem 2 is practical when a model is known to have a solution, it does

not tell whether a solution exists. The next Theorem 3 states when the Behavioral

Blanchard-Kahn condition is necessary and sufficient for a unique solution to exist.

Theorem 3 If a macroeconomic model satisfies the Sunspot Admissibility condition,

then the Behavioral Blanchard-Kahn condition is necessary and sufficient for there to

exist a unique solution.

Proof. Sufficiency is given by Theorem 1.

The Behavioral Blanchard-Kahn condition fails if either nU 6= nC or nS 6= nK .

Using nU + nS ≤ nC + nK , the four possible cases are:

1. If nU < nC , then there exist zero or multiple solutions, by Theorem 2.

2. If nS > nK , then it must be that nU < nC , so there is no unique solution.

3. If nS < nK , then there is no solution, by Lemma 2.

4. If nU > nC , then it must be that nS < nK , so there is no solution.

Table 1 summarizes the implications of the Behavioral Blanchard-Kahn and Sunspot

Admissibility conditions studied in this section.

4 A Simple Asset Pricing Model

A simple example illustrates why the Behavioral Blanchard-Kahn condition is im-

portant, and how equilibrium uniqueness depends on the spectral radius r(Eb) of the

expectation operator.

4.1 The Model

Consider an asset paying stochastic dividends dt, which is governed by a stationary

AR(1) process:

dt = ρdt−1 + ωt

where ωt is standard normal.
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SSA holds SSA fails

BBK holds Unique solution Unique solution

nS < nK No solution No solution

nU < nC and nS ≥ nK Multiplicity Unique solution

Table 1: Existence and Uniqueness Summary

Notes: The table summarizes when a model has a solution, and when it is unique, depending on the
Behavioral Blanchard-Kahn (BBK) condition and the Sunspot Admissiblity (SSA) condition. nS
and nU denote the number of stable and unstable generalized eigenvalues, while nK and nC denote
the number of state and control variables. The results follow from Theorems 1, 2, 3, and Lemma 2.

The asset is priced by risk-neutral agents with fixed discount factor β > 0. The

price of the asset once dividends are realized but before they are paid is given by

pt = dt + βEbt [pt+1] (17)

When mapped to the general form in equation (4), BX0 = 1 and BX1 = β, so the

generalized eigenvalue is 1/β. When β < 1, there is one explosive eigenvalue and one

endogenous control pt, so the Blanchard-Kahn condition is satisfied under rational

expectations.

The model solution is given by recurring equation (17):

pt = dt + βEbt [dt+1] + β2Ebt
[
Ebt+1 [dt+2]

]
+ ... (18)

if this sequence convergences. The operator representation of the equilibrium condi-

tion is

~p = ~d+ βEb~p (19)
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where

~d =


1

ρ

ρ2

...


With operators, the solution is again given recursively by

~p = ~d+ βEb~d+ β2E2
b
~d+ ...

= (I − βEb)−1~d

if it exists. By definition, the inverse (I − βEb)−1 exists if the spectral radius satisfies

r(Eb) < 1
β
. This is the Behavioral Blanchard-Kahn condition for the simple asset

pricing model, and it ensures the solution is unique.

4.2 Multiplicity

What goes wrong when r(Eb) > 1
β
? Sunspot equilibria are possible, even though the

traditional Blanchard-Kahn condition is satisfied.

Consider any two solutions ~p1 and ~p2 solving the asset pricing equation (19). The

difference p̂ ≡ ~p1 − ~p2 satisfies

p̂ = βEbp̂ (20)

Such a vector p̂ only exists if 1/β is an eigenvalue of Eb. This is only possible if

Sunspot Admissibility is satisfied, which requires r(Eb) > 1/β.

If so, then the asset pricing model features multiplicity. If ~p is a solution that

depends on dividends dt and p̂ is an eigenseries driven by extrinsic sunspots, then

~p+ p̂ is an equilibrium price process with excess volatility.

When the traditional Blanchard-Kahn condition fails in rational expectations

models, sunspots are easy to construct: any white noise process can be a forecast

error in the extrinsic process. But sunspots are not so trivial when agents have

behavioral expectations.

As an example, consider the “overextrapolation” expectations studied by Angele-

tos, Huo, and Sastry (2021):

EME,θ
t [pt+1] = θEt [pt+1]
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with θ > 1. Section D.2.1 demonstrates that the spectral radius for this type of

expectations is r(EME,θ) = θ. If θ > 1
β
, then the asset pricing model has multiple

solutions. If θ < 1
βρ

, a forward-looking solution to equation (18) still exists:

pME,θ
t = dt + βEME,θ

t [dt+1] + β2EME,θ
t [dt+2] + ...

=
1

1− βθρ
dt

With these expectations, a valid sunspot process satisfying equation (20) for p̂t is

p̂t =
1

βθ
p̂t−1 + υt (21)

where υt is any white noise. The process for υt can be any scaling of the dividend

shocks ωt, or it can be extrinsic to the model, including literal sunspots. But from

the perspective of agents in the model, forecast errors are not white noise. Instead,

sunspot forecast errors η̂t ≡ p̂t − EME,θ
t−1 [p̂t] are ARMA(1,1):

η̂t =
1− 1

β
L

1− 1
βθ
L
υt

For some expectations, it is impossible to construct such a process; there are the

expectations for which Sunspot Admissibility never holds. But for overextrapolation,

an extrinsic eigenseries is admissible so long as θ > 1/β.

Figure 2 displays multiple solutions to the asset pricing model for overextrapo-

lation expectations with θ > 1/β. Panel (a) plots how the sunspot forecast error

depends on the behavioral parameter θ. Each line is the impulse response function

of an equilibrium forecast error ηt to a unit sunspot shock υt. The solid red curve is

white noise, which is the standard sunspot shock under rational expectations (θ = 1).

As θ increases, agents’ forecasts become less rational, and the forecast errors look

less like white noise. Panel (b) plots the impulse response functions for equilibrium

prices pt . In this panel, the behavioral parameter is fixed and the sunspot is defined

as υt = αωt for different values of α. The solid red curve is the solution without any

sunspots. All of these price paths are solutions to the model.
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(a) Sunspot Forecast Errors by θ (b) Multiple Equilibrium Price Processes

Figure 2: Multiplicity in the Simple Asset Pricing Model

Notes: The impulse response functions (IRFs) are plotted for unit dividend shocks in the the asset
pricing model with ME-type expectations, with β = 0.99 and ρ = 0.75 in all cases. The panel (a)
IRFs are the responses of sunspot forecast errors, calculated for a variety of θ values; the “white
noise” sunspots correspond to θ = 1. The panel (b) IRFs are the responses of asset prices for
different sunspot equilibria, with a common θ = 1.25.

4.3 Sunspot Admissibility in the Asset Pricing Model

The examples considered thus far in this section satisfied Sunspot Admissibility: if

the Behavioral Blanchard-Kahn condition did not hold, then there was multiplicity.

But Theorem 2 says that if Sunspot Admissibility fails, then solutions to models will

be unique regardless of the Behavioral Blanchard-Kahn condition.

The next two examples demonstrate why Sunspot Admissibility is necessary. In

both cases, I assume β > 1 so that the Behavioral Blanchard-Kahn condition fails.

Under rational expectations, this would imply multiplicity, this is not always the

case when expectations are behavioral. Section 4.3.1 considers the “Naive Heuristic”,

which implies Sunspot Admissibility is never satisfied. Then Section D.3.4 considers

“Natural Expectations”, for which the condition holds in some models but not others.

4.3.1 Asset Pricing with the Naive Heuristic

Suppose now that asset-pricing agents forecast with the “Naive Heuristic” (Brock

and Hommes, 1997). Agents with NH-type expectations forecast prices using the

current price: ENHt [pt+1] = pt. How are assets priced with these expectations? The
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equilibrium condition (17) becomes

pt = dt + βENHt [pt+1]

=⇒ pt =
dt

1− β
This solution holds for any value of β 6= 1. Unlike the FIRE case, a sufficiently small

β is not required for a stationary equilibrium to exist. And this equilibrium is always

unique.

When β > 1, the Behavioral Blanchard-Kahn condition fails, but that is not

enough to guarantee multiplicity. For a sunspot equilibrium to exist, there must be a

time series for equilibrium differences p̂t that satisfies equation (20). With the Naive

Heuristic, this equation becomes:

p̂t = βp̂t

For β > 1, the only solution is p̂t = 0. No multiplicity is possible.

The key characteristic that makes Sunspot Admissibility fail is that the heuristic

is entirely backwards-looking. Property 3 implies that these types of heuristics never

admit sunspots.

For the expectations discussed thus far, Sunspot Admissibility either always held

(such as the ME-type) or never held (such as the NH-type). But there are expec-

tations that fall in between, such that sunspots are possible in some models but not

others. The next section provides an example

4.3.2 Asset Pricing with Natural Expectations

The previous section demonstrated why multiplicity requires Sunspot Admissibility.

With the Naive Heuristic, this condition was straightforward to characterize: it never

holds. But for some expectations, it is not so clear, and determining if a model is

simply stable can help a practitioner evaluate whether multiplicity is possible.

In this example, agents have “Natural Expectations.”10 They forecast prices by

ENE,θ,φt [pt+1] = (1 − φ)Et[pt+1] + φθpt, with φ ∈ (0, 1) and θ ∈ (−1, 1). In this case,

10These expectations are inspired by – but do not exactly correspond to – the expectations studied
in Fuster, Laibson, and Mendel (2010).
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the simple asset pricing equation (17) becomes:

pt = dt + β ((1− φ)Et[pt+1] + φθpt)

Table 2 reports that the Behavioral Blanchard-Kahn condition is satisfied in this

model whenever 1/β > max(|φθ|, 1− φ).

What happens when β is large enough so that the condition is not satisfied?

Multiplicity is possible. To form sunspot equilibria, there must be a time series p̂t

that satisfies equation (20); with natural expectations, this equation becomes:

p̂t = β ((1− φ)Et[p̂t+1] + φθp̂t)

These expectations have an AR(1) eigenseries, i.e. this equation is solved by the

following time series:

p̂t =
1/β − φθ

1− φ
p̂t−1 + υt

where υt is any white noise.

Sunspot Admissibility is satisfied in this case if and only if |1/β−φθ
1−φ | < 1. Otherwise,

it is impossible to create a stationary sunspot process for prices. This condition is

known analytically because the simple asset pricing model is simply stable: there

is only one stable eigenvalue for the one sunspot dimension. To see what happens

without this property, consider the following modified asset pricing model:

pt = dt − αβxt−1 + βENEt [pt+1] (22)

where xt is some endogenous state variable that affects the net dividends earned by

the asset pricer. The state variable is determined based on past prices:

xt = γpt + δxt−1 (23)

where δ ∈ (0, 1) by assumption. This example is rather abstract, so as to be only a

simple modification of the asset pricing model, and to have its stability easily describ-

able. But this xt state might represent a dynamic tax or other market intervention

that depends on asset price levels in a sticky way.
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Represent this model in the form of the matrix equation (4):

ENEt

[(
pt+1

xt

)]
=

(
η α

γ δ

)(
pt

xt−1

)
+

(
1

0

)
dt

where η ≡ 1/β.

The proof of Theorem 2 is constructive and uses a a general operator representa-

tion to show why sunspot admissibility is necessary for multiplicity. But to make it

clear what can go wrong, I will use a simpler approach to demonstrate why sunspots

may not be possible in this particular model. Substitute out for from the asset pric-

ing equation (22) using xt = γ
1−δLpt as implied by equation (23). This gives a single

equation that describes equilibrium:(
η +

αγL

1− δL

)
pt = dt + ENEt [pt+1]

If the Behavioral Blanchard-Kahn condition is not satisfied, will there be sunspot

equilibria? Rewrite this single equation in terms of differences between equilibrium

price processes p̂t (e.g. p̂ = ~p1 − ~p2, so the exogenous dt drops out, analogous to

equation (20)), and use the definition of the NE expectation:(
η +

αγL

1− δL

)
p̂t = (1− φ)Et[p̂t+1] + φθp̂t (24)

Does this equation have a stationary solution? Not in general. Proposition 2 gives

the condition for exactly when. Denote the determinant of the model’s matrix by

ζ ≡ δη − αγ:

Proposition 2 The modified asset pricing model with natural expectations has sta-

tionary sunspot equilibria if and only if both eigenvalues are stable, |ζ − δφθ| < 1−φ,

and |φθ − η − δ(1− φ)| < 1− φ+ ζ − δφθ.

Proof: Appendix B.7

Crucially, the condition for Proposition 2 may or may not be satisfied regardless of

whether |1/β−φθ
1−φ | < 1 holds. The analytical condition is useful for simply stable mod-

els, but when models are more complicated, there is no general analytical inequality

that determines whether Sunspot Admissibility holds.
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Figure 3: Multiplicity in the Simple Asset Pricing Model

Notes: The figure demarcates the regions where Sunspot Admissibility and the Behavioral
Blanchard-Kahn conditions hold in the modified asset pricing model for possible values of φ, θ, and
β. In all cases the eigenvalues are λ1 = 4

5 and λ2 = 1
2 . The remaining δ, η, and ζ are determined

by the values of λ1, λ2, and β

Figure 3 demonstrates this challenge. The gray regions denote combinations of the

expectation parameters φ and θ such that the Behavioral Blanchard-Kahn condition

fails when the largest eigenvalue is λ1 = 4
5
. The blue curve demarcates the regions

where Sunspot Admissibility is or is not satisfied in the simple asset pricing model.

In the gray regions left of the curve, multiplicity is possible because both Behavioral

Blanchard-Kahn fails and Sunspot Admissibility is satisfied. However, in the gray

region to the right of the curve, there can be no sunspot equilibria even though

Behavioral Blanchard-Kahn fails; this is the space where |1/β−φθ
1−φ | > 1.

Modifying the model to break simple stability changes the relationship between

expectations and multiplicity. The three curves in Figure 3 plot the demarcations for

three different β parameterizations that hold the eigenvalues λ1 > λ2 > 0 fixed. The

blue line that describes the simple model also corresponds to the modified model where

α = γ = 0, and δ = λ2. The purple and red lines have smaller values of β but the same

eigenvalues, so α and γ must become non-zero: the model’s control and state now

interact. The model is no longer simply stable, so the determinacy region changes. As

β shrinks, the curves shift left, reducing the possibility of multiplicity by shrinking the
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space where both Behavioral Blanchard-Kahn and Sunspot Admissibility are satisfied.

This example demonstrates why simple stability is a useful property for many

expectations: it allows for an analytical inequality that determines exactly when

Sunspot Admissibility holds. But simple stability is not a necessary condition; if it

fails to hold, Sunspot Admissibility may have to be evaluated case-by-case.

5 The New Keynesian Model with Behavioral Ex-

pectations

This section considers the three-equation New Keynesian model with general behav-

ioral expectations, and describes expectations for which unique equilibria exist when

nominal interest rates are fixed.

5.1 The Behavioral New Keynesian Model

The three-equation New Keynesian model is given by:

New Keynesian Phillips curve: πt = βEbt [πt+1] + κyt

Euler equation: it = Ebt [πt+1] + Ebt [γyt+1]− γyt
Taylor rule: it = φππt + xt

where the endogenous variables are per capita output yt, the inflation rate πt, and the

nominal interest rate it. xt is an exogenous monetary policy shock. In the canonical

model, Eb denotes rational expectations. Under some assumptions (Appendix C) an

arbitrary behavioral expectations operator can be used instead; Jump and Levine

(2019) review several specific examples.

When φπ < 1, this model is well known to not satisfy the Blanchard-Kahn con-

ditions for standard calibrations: there are three control variables, but only two ex-

plosive eigenvalues. The “Taylor principle” is to resolve this multiplicity by choosing

φπ > 1 so that there are three explosive eigenvalues. Per Theorem 1, this principle

applies for any behavioral expectation with r(Eb) = 1.11

11This includes the New Keynesian models with diagnostic expectations studied by Bianchi, Ilut,
and Saijo (2024) and L’Huillier, Singh, and Yoo (2023).
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5.2 Determinacy with an Interest Rate Peg

Recent experience conflicts with the canonical model. Rich economies spent several

years with fixed interest rates at the zero lower bound after the global financial

crisis, and yet inflation volatility remained low. A modest literature arose to suggest

mechanism under which the New Keyensian model is determined with an interest rate

peg, including by relaxing rational expectations.

As demonstrated in Section 4.2, Gabaix (2020)’s “cognitive discounting” can

achieve determinacy by choosing expectations with spectral radius r(EME) less than

the magnitude of the stable eigenvalue λS.12 This choice ensures that the Behavioral

Blanchard-Kahn condition is satisfied so a unique equilibrium must exist.

Similar to Gabaix’s assumption, any form of behavioral expectations with spectral

radius r(Eb) < |λS| will have a unique solution. With appropriate parameterization,

this includes all of the incomplete information structures discussed in Section 7.13

Other forms of behavioral expectations can achieve determinacy without assum-

ing biases so large that r(Eb) < |λS|. This is possible if the expectations do not

satisfy Sunspot Admissibility. Examples in this paper include many of the heuris-

tic expectations described in Section 7. The most well-known example is Adaptive

Expectations, which never admits any sunspot equilibria, even when the Behavioral

Blanchard-Kahn condition is violated.14 Proposition 3 makes this clear:

Proposition 3 If the behavioral expectation is strictly backwards-looking, then the

solution to the behavioral New Keynesian model with an interest rate peg is unique.

Proof: Appendix B.8

When the behavioral expectation is backwards looking, it is impossible to con-

struct sunspot forecast errors. The expectation operator has no eigenseries. Table 2

12Ilabaca, Meggiorini, and Milani (2020) evaluate the cognitive discounting model with US time
series. Their parameter estimates satisfy r(EME) < 1 so that the model is determinate in the
pre-1980 data, even though monetary policy in this era responds less than one-for-one to inflation.

13Models that achieve determinacy in this way violate regularity condition (3): there exists an
eigenvalue in the interval (r(Eb), 1]. This violation is not problematic in the canonical New Keynesian
model, because it has no state variables. However, these types of expectations can introduce internal
inconsistencies in more general models where state variables may be solved both forwards and
backwards.

14This result depends on the restriction of solutions to be stationary; McCallum (1983) demon-
strates that adaptive expectations admit non-stationary sunspots equilibria. Of course, the rejection
of nonstationary equilibria also motivates the Taylor principle, which achieves uniqueness by trans-
forming the multiplicity of stationary equilibria into explosive solutions.
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reports that many common heuristics in the literature are strictly backwards looking

and imply a unique solution with an interest rate peg.

6 Sophistication vs. Naivete

Behavioral models may have different equilibria when agents are sophisticated than

when they are naive, using the O’Donoghue and Rabin (1999) terminology.

The macroeconomic models considered in this paper feature “sophisticated” agents:

they form expectations about future endogenous variables that are consistent with

behavioral expectations holding in the future. This assumption is implicit in how the

solution is defined (Definition 3); the time series that agents forecast in the model

equation (4) are the equilibrium time series.

The simple asset pricing model of Section 4 makes it clear how the recursive model

definition implies that agents are sophisticated. Recurring equation (17) implies equa-

tion (18): agents forecast the asset price pt+1 assuming that expectations will still be

behavioral in t+1. But despite the terminology, the agents do not require any sophis-

ticated reasoning in this model. At time t they are simply forecasting the stationary

time series pt+1; they do not need to reason through the model equilibrium.

In contrast, some papers feature “naive” agents: they forecast future variables

expecting rational expectations to hold in the future. These models are solved by

recurring equation (4) under rational expectations, and then applying the behavioral

expectation once. In the simple asset pricing mode, the naive analog of equation (18)

is:

[naive:] pN,t = dt + βEbt
[
dt+1 + β2dt+2 + β3dt+3 + ...

]
The recursive asset pricing equation (17) does not necessarily hold when expectations

are naive. There are some examples where the naive solution and sophisticated solu-

tion coincide – i.e. for types where the law of iterated expectations holds, included

Delayed Observation and Diagnostic Expectations with only 1-period of overreaction

– but in general, the solutions may be different.

Some authors argue that a priori, the naive representation is a better description

of human behavior.15 But other macroeconomists assume agents are sophisticated,

15Bianchi, Ilut, and Saijo (2024) argue that naivety is more realistic, particularly when agents
forecast their own behavior, and use the assumption to study business cycle models with diagnostic
expectations.
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including Gabaix (2020). The correct assumption may depend on the specific appli-

cation.

If Theorems 1 and 2 apply to models with sophisticated agents, what determines

existence and uniqueness when agents are naive? This problem is much simpler:

when naive agents have behavioral expectations, then the traditional Blanchard-Kahn

condition can be applied as if agents had rational expectations. Theorem 4 formalizes

this result.

Let variables with N subscripts denote solutions to the model with naive agents.

A “stationary naive solution” is a stationary time series XN,t satisfying

BX1χN,t = BX0XN,t +BY Yt (25)

for all t, where χN,t denotes the naive forecast of XN,t+1. With this definition, the

existence and uniqueness theorem is

Theorem 4 If a macroeconomic model with naive agents has exactly nC eigenvalues

outside the unit circle, then it has a unique stationary naive solution.

Proof: Appendix B.9

The proof of Theorem 4 closely resembles the proof of Theorem 1. Intuitively,

the condition for a unique equilibrium with naive agents is the same as the condition

for a unique equilibrium with rational expectations. Why? Naive agents’ choices

depend on their forecast of a counterfactual rational expectations economy. So if the

counterfactual equilibrium is unique, their choices will be uniquely determined, no

matter how their behavioral expectation is formed.

7 The Spectra for Various Expectations

In this section, I describe the spectra of a variety of expectations.

Table 2 summarizes the expectations. Section 7.2 introduces properties of oper-

ators that are useful for describing their spectra. Appendix D describes in greater

detail how the operator forms and spectral properties are derived.

Figure 1 classified expectations into one of four categories, based on equilibrium

uniqueness when the original Blanchard and Kahn (1980) condition holds. This clas-

sification is a function of the properties reported in in Table 2. Specifically, Theorem

2 implies that expectations are classified based on whether their properties satisfy:
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1. Unique if Traditional Blanchard-Kahn Holds: Spectral radius r(Eb) = 1

and Sunspot Admissibility always satisfied

2. Possible Multiplicity if Traditional Blanchard-Kahn Holds: Spectral

radius r(Eb) > 1 and Sunspot Admissibility may be satisfied

3. Possibly Unique if Traditional Blanchard-Kahn Fails: Spectral radius

r(Eb) < 1 or Sunspot Admissibility may not be satisfied

4. Always Unique: Sunspot Admissibility never satisfied

7.1 Types of Expectations

Appendix D describes the expectations in detail, but I summarize them here. The

behavioral expectations are classified into three categories.

Sub-rational Expectations are rational at long horizons, but not in the short run.

These forms tend to satisfy Sunspot Admissibility, at least in simply stable models.

“Mis-extrapolation” includes overextrapolation (Angeletos, Huo, and Sastry, 2021)

and cognitive discounting (Gabaix, 2020) representations. “Delayed Observation”

are expectations formed when agents forecast rationally but do not have access to

contemporaneous information. Other expectations in this category include “Diagnos-

tic Expectations” (Bordalo, Gennaioli, and Shleifer, 2018) and “Sticky Information”

(Mankiw and Reis, 2002).

Heuristic Expectations are at least partially backwards-looking. When they are

entirely backwards looking, they never satisfy Sunspot Admissibility, as with Adap-

tive Expectations (Cagan, 1956), the “Naive Heuristic” (Brock and Hommes, 1997),

“Trend Following” and “Anchoring and Adjustment” (Hommes, Massaro, and We-

ber, 2019). Some forms use incorrectly-specified but rationally estimated AR(1) mod-

els, e.g. “Behavioral Learning” (Hommes and Zhu, 2014) or “Natural Expectations”

(Fuster, Laibson, and Mendel, 2010). These forms do not have a linear representation,

but I approximate them with a heuristic AR(1) instead. Finally, the expectations that

mix forward-looking behavior with a heuristic admit sunspots in some cases, such as

the “Heterogeneous Expectations” (Branch and McGough, 2004).

Incomplete Information includes simple dispersed information structures, where

agents have rational expectations but noisy signals about economic shocks. The re-

sulting expectation operator describes the behavior of average expectations. This
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is distorted when agents engage in “Beauty Contests” (e.g. Woodford (2003)) or

are overconfident about their signal precisions (e.g. Daniel, Hirshleifer, and Subrah-

manyam (1998) and Odean (1998).)

7.2 Spectral Properties of Expectations Operators

The spectral radius has several well-known properties that are useful for characterizing

behavioral expectations:

1. The spectral radius is absolutely homogeneous, i.e. for scalar α:

r(αEb) = |α|r(Eb)

2. If Eb is Toeplitz, then the spectral radius is the absolute value of the largest

entry in the operator.

3. The spectral radius obeys Gelfand’s formula:

r(Eb) = lim
j→∞
||E jb ||

1
j (26)

where || · || denotes the operator norm.

These properties yield reliable strategies for finding the spectral radius once an

expectation’s operator form is known. If the expectation is proportional to another

operator with a known spectral radius, then the first property gives the radius im-

mediately. If the operator is Toeplitz, the second property is useful. Finally, if none

of those cases apply to the operator, Gelfand’s formula can always be used, either

analytically or numerically.

In order to describe when expectations satisfy the Sunspot Admissibility condi-

tion, it is necessary to study their eigenvalues and associated eigenvectors. A useful

property to this end is:

Property 3 Lower triangular Toeplitz operators have no eigenvalues.

Altun (2011) proves this property for infinite dimensional Toeplitz operators. Many

heuristic expectations have lower triangular operators, so they will never admit sunspot

equilibria.
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How can the eigenvalues of an expectation operator inform when the Sunspot

Admissibility Condition is satisfied? Every eigenvalue λ of Eb has an associated sta-

tionary eigenseries yt (representing the eigenvector of Eb) satisfying

Ebt [yt+1] = λyt

If yt is AR(1) with autocorrelation λb, and the set of eigenvalues is the unit disc,

then Sunspot Admissibility is always satisfied with white noise sunspots, as discussed

below. If the eigenseries exists in some other form, then it is satisfied in simply stable

models with stable eigenvalues that are also eigenvalues of the expectation operator.

Otherwise, if yt does not exist, the condition is never satisfied

8 Conclusion

This paper developed a general framework for representing behavioral expectations in

macroeocnomic models, and studied equilibrium uniqueness therein. I introduced the

Behavioral Blanchard-Kahn condition, which allows theorists and applied macroe-

conomists to understand how their assumptions about expectation formation affects

multiplicity in their model. The condition depends on the spectral radius of the ex-

pectation operator. In the appendices, I derive the spectral radius for many common

examples.

35



References

Adams, J. J. (2021): “Macroeconomic Models with Incomplete Information and Endoge-
nous Signals,” University of Florida mimeo.

Altun, M. (2011): “On the fine spectra of triangular Toeplitz operators,” Applied Mathe-
matics and Computation, 217(20), 8044–8051.

Angeletos, G.-M., Z. Huo, and K. A. Sastry (2021): “Imperfect Macroeconomic Ex-
pectations: Evidence and Theory,” NBER Macroeconomics Annual, 35, 1–86, Publisher:
The University of Chicago Press.

Angeletos, G.-M., and C. Lian (2021): “Determinacy without the Taylor Principle,”
Working Paper 28881, National Bureau of Economic Research.

Angeletos, G.-M., and I. Werning (2006): “Crises and Prices: Information Aggrega-
tion, Multiplicity, and Volatility,” American Economic Review, 96(5), 1720–1736.

Anufriev, M., T. Assenza, C. Hommes, and D. Massaro (2013): “Interest Rate
Rules and Macroeconomic Stability Under Heterogeneous Expectations,” Macroeconomic
Dynamics, 17(8), 1574–1604, Publisher: Cambridge University Press.

Bertasiute, A., D. Massaro, and M. Weber (2020): “The behavioral economics
of currency unions: Economic integration and monetary policy,” Journal of Economic
Dynamics and Control, 112, 103850.

Bianchi, F., C. Ilut, and H. Saijo (2024): “Diagnostic Business Cycles,” The Review
of Economic Studies, 91(1), 129–162.
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A Behavioral-Regular Time Series

One of the assumptions made in Section 3.1 is that a model’s time series is “behavioral-

regular”. This section defines this property, describes some features of time series with

this property, and gives examples of what can go wrong when it does not hold.

In most practical cases, the exogenous time series Yt is likely to be behavioral-

regular. The assumption that Yt satisfies the property rules out rare edge cases so

that Theorem 3 can make a sharp if-and-only-if statement.

This requirement for eliminating edge cases is not specific to behavioral expecta-

tions. Blanchard and Kahn (1980) also implicitly assert this condition when they con-

clude that an overdetermined model “almost always has no solution.” The behavioral-

regular assumption makes this elimination explicit. However, when agents have gen-

eral behavioral expectations, the condition is more complicated than the simple ra-

tional expectations case.

A.1 Definition

Why is this regularity property “behavioral”? The exact condition depends on the

type of behavioral expectations in the model:

Definition 5 The exogenous time series Yt in a model is behavioral-regular if it

satisfies both:

1. MUCΞη,U
~Y U 6= 0

2.
∑∞

j=0

(
T−1

1,ST0,SL
)j (

Υ~Y C + T−1
1,S
~Y S
)

is unbounded if any eigenvalue of T−1
1,ST0,S

is outside the unit disk.

where MUC denotes the projection matrix given by

MUC ≡ I − zUC(z′UCzUC)−1z′UC

Ξη,U is the operator given by

Ξη,U = − (I − LEb)
(
I − T−1

0,UT1,UEb
)−1

T−1
0,U
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Υ is the operator given by

Υ ≡ T−1
1,S

(
T1,SU − (T0,SCL)

(
I − T−1

0,UT1,UEb
)−1

T−1
0,UEb +

(
T0,SzSCz

−1
UC + T0,SC

)
Ξη,C

)
~Y S and ~Y U are the partitioned block of Q′BY

~Y defined in equation (9).

Property (1) implies that the nU -dimensional unstable block of the model re-

quires nU controls to solve, i.e. forward-looking equations cannot be solved by state

variables. Property (2) implies that state variables cannot solve backwards-looking

equations unless the associated eigenvalues are stable. Under rational expectations,

this second property is redundant. But behavioral expectations allows for eigenvalues

in the (1, r(Eb)) interval that are neither stable nor unstable.

A.2 Implications of Behavioral-Regularity

Lemma 2 If a model has nS < nK, and Yt is behavioral-regular, then the model has

no solution.

Proof. First consider the case where nU > nC . ηUt is related to forecast errors by

ηUt = zUC
(
Ct − Ebt−1[Ct]

)
zUC has more rows than columns, so the forecast error Ct − Ebt−1[Ct] may be overde-

termined. Suppose a solution for ηUt exists. Left multiply by MUC :

MUCη
U
t = 0

because MUCzUC = 0. In operator notation ~ηU = Ξη,U
~Y U :

MUCΞη,U
~Y U = 0

which violates the assumption that Yt is behavioral-regular. No solution exists.

Next consider the case where nU ≤ nC so that solutions for χUt , ηUt , and ηSt exist

by equations (11), (12), and (13). A solution must have a square-summable process

χSt that satisfies recursive equation (15), which implies χSt =
∑∞

j=0

(
T−1

1,ST0,SL
)j

Θt.
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In operator notation, this equation is

~χS =
∞∑
j=0

(
T−1

1,ST0,SL
)j (

Υ~Y C + T−1
1,S
~Y S
)

which is not square-summable if Yt is behavioral-regular.

A.2.1 Problem Cases Without Behavioral-Regularity

What can go wrong when Yt is not behavioral-regular?

First, consider the simple asset pricing model form Section 4. But instead of

letting the price pt be a control variable, assume that it is a pre-determiend state,

denoted by pSt . The asset pricing equation (17) becomes:

pSt−1 = dt + βpSt

with β ∈ (0, 1). Rearrange:

pSt = −λ

(
∞∑
j=0

λjLj

)
dt

where the model’s eigenvalue λ = 1
β
> 1. This expression is “almost always” infinite,

unless β is a zero of the dividend process, i.e.

dt = (1− λL)xt

where xt is any square-summable time series. Only in this case, the state variable

price pSt solves the model by

pSt = −λxt

This is an example of an edge case where nU > nC but the model still has a solution

because a state variable can solve the forward-looking asset pricing equation. The

exogenous time series Yt is the dividend process dt, and it is not behavioral-regular

because property (2) in definition 5 does not hold.

This example also fails property (1) in the rational expectations case. Suppose as

usual that the price pt is a control variable, and let the dividend process be MA(1):
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dt = (1− λL)vt. The asset price is

pt = dt + βEt[dt+1]

= vt − λvt−1 − βλvt

so in the edge case where λ = 1
β
:

pt = −λvt−1

and again, the forward-looking pricing equation is solved by a predetermined state

variable.

But when agents have behavioral expectations, λ = 1
β

does not imply that prop-

erty (1) fails. This is why definition 5 requires two properties, where the rational

expectations analog would only require one. As an example, consider the ME-type

expectations EME,θ
t [pt+1] = θEt[pt+1]. The asset pricing equation becomes

pt = dt + βθEt[dt+1]

again, assume MA(1) dividends:

= vt − λvt−1 − βθλvt

Now with these expectations, property (1) fails if λ = 1
βθ

.

B Additional Proofs

B.1 Proof of Property 2

Proof. By assumption Eb is series-agnostic, so it commutes with B and the spectral

radius of BEb is sub-multiplicative:

r(BEb) ≤ r(B)r(Eb) = |λB|r(Eb) < 1

where the final inequality follows from the assumption that |λB| < r(Eb)−1. From the

definition of the spectral radius, λI −BEb is invertible for any λ > r(BEb). Therefore

43



r(BEb) < 1 implies I −BEb is invertible.

B.2 Proof of Lemma 1

Proof. Expressed in operator notation, the recursive equation is

~x = BEb~x+ Eb~y

Property 2 implies I −BEb is invertible, so ~x is given by

~x = (I −BEb)−1 Eb~y

=

(
∞∑
j=0

BjE jb

)
Eb~y

which in time series notation is

xt =
∞∑
j=0

BjEbt,t+j[yt+j+1]

B.3 Proof of Lemma 2

Proof. ηUt is related to forecast errors by

ηUt = zUC
(
Ct − Ebt−1[Ct]

)
zUC has more rows than columns, so the forecast error Ct − Ebt−1[Ct] may be overde-

termined.

Suppose a solution for ηUt exists. Left multiply by MUC :

MUCη
U
t = 0

because MUCzUC = 0. In operator notation ~ηU = Ξη,U
~Y U :

MUCΞη,U
~Y U = 0
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which violates part (1) of Definition 5. No solution exists.

B.4 Proof of Proposition 1

Proof. There exists an eigenvector ~ui such that

(
λ�i − Eb

)
~ui = 0

and thus the vector ~v = (1− λ�i L)~ui satisfies

(
λ�i − Eb

)
(1− λ�i L)−1~v = 0

There is some matrix ϕ such that a single row in each block of (ΛS − Eb) (I − ΛSL)−1 (QSs�ϕ)i

is nonzero, and that row is proportional to
(
λ�i − Eb

)
(1− λ�i L)−1. Therefore

(ΛS − Eb) (I − ΛSL)−1 (QSs�ϕ)i~v = 0

so the Sunspot Admissibility condition is satisfied.

B.5 Proof of Theorem 2

Proof. As in the proof of Theorem 1, χUt and ηUt are given by equations (11) and

(12).

Suppose a solution exists. If nU ≥ nC then ηt can be inverted from ηUt , so the

solution is unique. If nU < nC , then ηt cannot be inverted from ηUt ; whether or not

there exist multiple solutions depends on Sunspot Admissibility.

� denotes the “sunspot” dimensions; let η�t denote the corresponding rows of ηSt ,

and let χ�t denote the corresponding rows of χSt . The forecast errors can be found by

Ct − Ebt−1[Ct] =

(
z�

zUC

)−1(
η�t

ηUt

)

and expected controls are given by

Ebt [Ct+1] =

(
z�

zUC

)−1(
χ�t

χUt

)
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Ebt

[(
z�

zUC

)
Ct+1

]
=

(
χ�t

χUt

)

Ebt

[(
η�t+1

ηUt+1

)
+

(
χ�t

χUt

)]
=

(
χ�t

χUt

)
which in operator notation is

Eb

((
~η�

~ηU

)
+ L

(
~χ�

~χU

))
=

(
~χ�

~χU

)

The unstable dimensions are determined by the unstable block, and satisfy this equa-

tion by construction. But, after rearranging, any solution for the sunspot dimensions

must satisfy

(I − EbL) ~χ� = Eb~η� (27)

Denote the difference between two arbitrary solutions with hats, e.g. χ̂S ≡ ~χS1−~χS2 ,

η̂� ≡ ~η�1 − ~η�2 , and so forth. These differences must satisfy equation (15) expressed

in differences:

χ̂S = T−1
1,ST0,SLχ̂

S + T−1
1,ST0,S η̂

S

which is a simple expression because the unstable block’s unique solution implies

χ̂U = η̂U = 0. This gives χ̂S in terms of η̂S:

χ̂S =
(
I − T−1

1,ST0,SL
)−1

T−1
1,ST0,S η̂

S

Left multiply by the rectangular matrix s′� that isolates the sunspot rows:

χ̂� = s′�
(
I − T−1

1,ST0,SL
)−1

T−1
1,ST0,Ss�η̂

�

which also uses η̂S = s�η̂
�.

Eigendecompose by T−1
1,ST0,S = Q−1

S ΛSQS to yield

χ̂� = s′�
(
I −Q−1

S ΛSQSL
)−1

Q−1
S ΛSQSs�η̂

�

χ̂� = s′�Q
−1
S (I − ΛSL)−1 ΛSQSs�η̂

�
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Plug in with equation (27) to find a single expression in η̂� alone:

Ebη̂� = s′�Q
−1
S (I − EbL) (I − ΛSL)−1 ΛSQSs�η̂

�

Use s′�Q
−1
S QSs� = I to collect terms:

0 = s′�Q
−1
S

(
(I − EbL) (I − ΛSL)−1 ΛS − Eb

)
QSs�η̂

�

ΛS and (I − ΛSL)−1 commute:

0 = s′�Q
−1
S ((I − EbL) ΛS − Eb (I − ΛSL)) (I − ΛSL)−1QSs�η̂

�

0 = s′�Q
−1
S (ΛS − Eb) (I − ΛSL)−1QSs�η̂

� (28)

If and only if the Sunspot Admissibility condition hold, then there exists a vector

~v such that choosing any proportional vector η̂� ∝ ~v satisfies equation (28). Thus

multiple solutions exist.

B.6 Proof of Corollary 1

Proof. Sufficiency is given by Theorem 1. It remains to show that a solution can-

not be unique if neither the Behavioral Blanchard-Kahn nor Sunspot Admissibility

conditions hold. This occurs in three cases:

1. If nU < nC , then a unique solution does not exist by Theorem 2.

2. If nU = nC and nS < nK , then there is no solution by Lemma 2.

3. If nU > nC , then it must be that nS < nK , so there is no solution by Lemma 2.

B.7 Proof of Proposition 2

Proof. The proof is cleanest in operator notation. Equation (24) becomes(
η +

αγL

1− δL

)
p̂ = (1− φ)E p̂+ φθp̂ (29)
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Using the definition ζ ≡ δη − αγ:

(η − ζL) p̂ = (1− δL) ((1− φ)E + φθ) p̂

Rearrange:

0 = ((1− φ)E + (φθ − η)− δ(1− φ)LE + (ζ − δφθ)L) p̂ (30)

Apply E , using EL = I:

0 =
(
(1− φ)E2 + (φθ − η − δ(1− φ))E + ζ − δφθ

)
p̂ (31)

0 = E2

(
1 +

φθ − η − δ(1− φ)

1− φ
L+

ζ − δφθ
1− φ

L2

)
p̂

without loss of generality, write p̂ =
∑∞
j=0 ajL

j

1+
φθ−η−δ(1−φ)

1−φ L+ ζ−δφθ
1−φ L2

υ for some white noise υ

with a0 = 1. This implies

0 = E2

(
1 +

φθ − η − δ(1− φ)

1− φ
L+

ζ − δφθ
1− φ

L2

) ∑∞
j=0 ajL

j

1 + φθ−η−δ(1−φ)
1−φ L+ ζ−δφθ

1−φ L
2
υ

0 = E2

∞∑
j=0

ajL
jυt = E2(1 + a1L)υ

i.e. aj = 0 for all j > 1. To solve for a1, rewrite equation (30):

0 = ((1− φ)E + (φθ − η − δ(1− φ)) + δ(1− φ)(1− LE) + (ζ − δφθ)L) p̂

0 = E
(

1 +
φθ − η − δ(1− φ)

1− φ
L+

ζ − δφθ
1− φ

L2

)
p̂+ δ(1− LE)p̂

Plug in for p̂:

0 = E(1 + a1L)υ + δ(1− LE)

∑∞
j=0 ajL

j

1 + φθ−η−δ(1−φ)
1−φ L+ ζ−δφθ

1−φ L
2
υ

and use the forecast Eυ = 0 and the forecast error (1−LE)
∑∞
j=0 ajL

j

1+
φθ−η−δ(1−φ)

1−φ L+ ζ−δφθ
1−φ L2

υ = υ

to yield

0 = a1υ + δυ
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=⇒ a1 = −δ

Any sunspot process must satisfy p̂ = 1−δL
1+

φθ−η−δ(1−φ)
1−φ L+ ζ−δφθ

1−φ L2
υ; when is such a

process stationary? When the representation (1− r2L)(1−ρ2L) = 1+ φθ−η−δ(1−φ)
1−φ L+

ζ−δφθ
1−φ L

2 has roots ρ1 and ρ2 inside the unit disc. These roots are also the roots of the

polynomial

z2 +
φθ − η − δ(1− φ)

1− φ
z +

ζ − δφθ
1− φ

It is well known when quadratic roots are inside the unit disk: if and only if | ζ−δφθ
1−φ | < 1

and |φθ−η−δ(1−φ)
1−φ | < 1 + ζ−δφθ

1−φ . The assumption that φ ∈ (0, 1) completes the proof.

B.8 Proof of Proposition 3

Proof. An expectation is strictly backwards-looking if its operator representation is

a causal lag operator polynomial. These operators are Toeplitz and lower triangular

(Adams, 2021). Per Property 3, it has no eigenvalues. Therefore the Sunspot Admis-

sibility condition is not satisfied, and by Theorem 2 it cannot have multiple solutions.

B.9 Proof of Theorem 4

Proof. Apply the Schur decomposition to the rational expectations model in equation

(4):

T1ZEt[Xt+1] = T0ZXt +Q′BY Yt

Take expectations of both sides

T1ZEt−1 [Et[Xt+1]] = T0ZEt−1[Xt] +Q′BYEt−1[Yt]

then isolate the unstable block using the definitions in equation (9)

T1,UEt[χUt+1] = T0,Uχ
U
t + Et[Y U

t+1]

Rearrange and recur:

χUt = −Et

[
∞∑
j=0

(
T−1

0,UT1,U

)j
T−1

0,UY
U
t+1

]
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and replace the rational expectations operator to define the unstable block of the

naive forecast:

χUN,t = −Ebt

[
∞∑
j=0

(
T−1

0,UT1,U

)j
T−1

0,UY
U
t+1

]
(32)

The infinite sum converges because all eigenvalues of T−1
0,UT1,U are inside the unit

circle.

The unstable block of equation (25) is given by

T1,Uχ
U
N,t = T0,Uχ

U
N,t−1 + T0,Uη

U
N,t + Y U

t

which implies the unstable block of the naive forecast error is

ηUN,t = T−1
0,UT1,Uχ

U
N,t − χUN,t−1 − T−1

0,UY
U
t (33)

where χUN,t is given by equation (32).

As in the sophisticated case, naive agents forecast state variables without error,

so the naive forecast error of the stable block is given by

ηSN,t = zSCz
−1
UCη

U
N,t (34)

Finally, solutions for χUN,t, η
U
N,t, and ηSN,t allow the remaining unknown χSN,t to be

solved from the stable block of equation (25):

T1,Sχ
S
N,t + T1,SUχ

U
N,t = T0,Sχ

S
N,t−1 + T0,SCχ

U
N,t−1 + T0,Sη

S
N,t + T0,SCη

U
N,t + Y S

t (35)

and rearrange for χSN,t:

χSN,t = T−1
1,ST0,Sχ

S
N,t−1−T−1

1,ST1,SUχ
U
N,t+T

−1
1,ST0,SCχ

U
N,t−1+T−1

1,ST0,Sη
S
N,t+T

−1
1,ST0,SCη

U
N,t+T

−1
1,SY

S
t

The matrix T−1
1,ST0,S has all eigenvalues inside the unit circle, so χSN,t can be written

as

χSN,t =
∞∑
j=0

(
T−1

1,ST0,S

)j (−T1,SUχ
U
N,t−j + T0,SCχ

U
N,t−1−j + T0,Sη

S
N,t−j + T0,SCη

U
N,t−j + Y S

t−j
)

(36)

Z is unitary, so the time series that uniquely solve the naive model (25) are
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recovered by

χN,t = Z∗

(
χSN,t
χUN,t

)

XN,t = χN,t + ηN,t = χN,t + Z∗

(
ηSN,t
ηUN,t

)
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ONLINE APPENDIX

C Deriving the Behavioral New Keynesian Model

This section derives the behavioral New Keynesian equations of Section 5 from mi-

crofoundations.

C.1 Households

The representative household’s problem is represented by the Bellman equation

V (A;Z) = max
C,N,B′

C1−γ − 1

1− γ
− χN

1+η

1 + η
+ βEb [V (A′;Z ′)|Z]

s.t. AR +WN +D = C +QA′

The household’s endogenous state variable is assets A which are purchased at a price

Q set by the government and pay return R. The household’s budget constraint is

real: workers choose consumption C (the numeraire) and work hours N earning real

wage W . Households also receive real dividends D from the firms, which they own.

The vector Z includes exogenous state variables, profits, and prices, which atomistic

households take as exogenous. Eb represents the household’s behavioral expectation,

and primes denote the next period’s values.

The household’s problem is solved by a labor supply equation

χNη = WC−γ

and an Euler equation

QC−γ = βEb
[
(C ′)

−γ
R′
]

The Euler equation can be derived as usual because Eb is assumed to be linear: the

partial derivative operator passes through it, so that ∂
∂B′

Eb [V (B′;Z ′)|Z] = Eb
[
∂
∂B′

V (B′;Z ′)|Z
]

The asset structure is unusual for a New Keyensian model. Q captures the com-

ponent of returns that is known in advance, while R captures the component that is

stochastic. Under rational expectations, both components can be included in R with-

out affecting behavior; this is not true when expectations are behavioral. Different
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assumptions about Q imply different equilibria. In this case, I assume:

Q =
1

1 + i
R =

1

Π

where i is the nominal interest rate set by monetary policy and Π = P ′

P
is inflation in

the price of consumption. These assumptions imply that the Euler equation becomes:

C−γ = (1 + i)βEb
[
(C ′)

−γ 1

Π′

]
(37)

C.2 Firms

The final good Y is produced by a competitive retail sector, which aggregates firm-

specific intermediate goods indexed by j ∈ [0, 1]:

Y =

(∫ 1

j=0

(Yj)
ε−1
ε dj

) ε
ε−1

which implies the standard demand function

(
Y

Yj

) 1
ε

=
P ′j
P

There is a unit measure of monopolistic firms producing intermediate goods. Firm

j’s real dividends are given by

Dj =
P ′j
P
Yj −WNj

where P ′j is the price of their output Yj. They produce by hiring Nj workers:

Yj = ζNj

where ζ is total factor productivity.

Each firm maximizes the present value of real dividends, which it discounts in the

same way as the household. Firms face a Rotemberg (1982) adjustment cost when

changing prices. When selecting a new price P ′j , the firm pays real cost ψ/2(logP ′j −
logPj)

2 in units of the numeraire, where Pj is the firm’s price in the previous period.
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The firm’s value function is

V (Pj, Z) = max
P ′j ,N

P ′j
P
ζNj −WNj −ψ/2(logP ′j − logPj)

2 +CγβEb
[
(C ′)

−γ
V (P ′j , Z

′)|Z
]

subject to the retail demand function
Pj
P

=
(

Y
ANj

) 1
ε
. Written in terms of a single

choice variable, the value function is

V (Pj, Z) = max
P ′j

(
P ′j
P

)1−ε

Y−W
ζ

(
P ′j
P

)−ε
Y−ψ/2(logP ′j−logPj)

2+CγβEb
[
(C ′)

−γ
V (P ′j , Z

′)|Z
]

The Euler equation is where Πj ≡
P ′j
Pj

0 = (1− ε)
(
P ′j
P

)1−ε

Y + ε
W

ζ

(
Pj
P

)−ε
Y −ψ log Πj +PjC

γβEb
[

1

P ′j
(C ′)

−γ
ψ log Π′j|Z

]

C.3 Aggregation and Market Clearing

Impose symmetry:

0 = (1− ε)Y + ε
W

ζ
Y − ψ log Π + PCγβEb

[
1

P ′
(C ′)

−γ
ψ log Π′|Z

]
The real wage is determined from the labor supply equation as W = χNηCγ. This

expression can be written in terms of output, using N = Y/ζ and C = Y to get

W = χζ−ηY η+γ, implying

0 = (1− ε)Y + εχζ−η−1Y η+γ+1 − ψ log Π + PCγβEb
[

1

P ′
(C ′)

−γ
ψ log Π′|Z

]
Log-linearize around the deterministic steady state, where lowercase variables de-

note log deviations, and over-bars denote steady state values:

0 =
(
(1− ε)Ȳ + εχζ−η−1Ȳ η+γ+1(η + γ + 1)

)
y − ψπ + ψβEb [π′|Z]

Rearranging gives the New Keynesian Phillips Curve with κ ≡ (1−ε)Ȳ+εχζ−η−1Ȳ η+γ+1(η+γ+1)
ψ

:

π = κy + βEb [π′|Z]
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or in the time series notation

πt = κyt + βEbt [πt+1]

Similarly, log-linearize the Euler equation (37) and impose market clearing so that

C = Y :

it = Eb [γyt+1 + πt+1]− γyt

This gives the two microfounded equations of the behavioral New Keynesian model

in Section 5; the assumed Taylor rule completes the model.

D Deriving the Spectra of Various Expectations

This appendix motivates the operator representations of the expectations appearing

in Table 2, and describes their spectra.

A series-agnostic expectations operator Eb operating on the vector of n time series

Xt has the same spectral radius r(Eb) for all n ≥ 1. Thus in the following sections I

describe the operators with scalar blocks, but the operator blocks expand to conform

to the dimension of the time series on which they operate, without affecting any

features of their spectra.

D.1 Rational Expectations

Let E without subscript denote the one-period-ahead rational expectation operator.

The rational expectation Et[Xt+1] of the time series Xt =
∑∞

j=0 XjL
jωt is

Et[Xt+1] = Et[
∞∑
j=0

XjL
jωt+1]

=
∞∑
j=0

Xj+1L
jωt
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The block vector representation of the one-period-ahead rational expectation is

E ~X =


X1

X2

X3

...


Therefore the operator E is given by

E =


0 1 0 0 ...

0 0 1 0 ...

0 0 0 1 ...
...

...
...

...
. . .

 = L′

E is Toeplitz with largest entry 1, so the spectral radius is

r(E) = 1

which is why the traditional Blanchard-Kahn condition is a special case of the Be-

havioral Blanchard-Kahn condition.

The Sunspot Admissibility condition is always satisfied for rational expectations.

Any stable eigenvalue λ is also an eigenvalue of E , with eigenvector corresponding to

the AR(1) process yt = λyt−1 + ωt:

Et[yt+1] = λyt

To satisfy Sunspot Admissibility, there must exist a time series represented in vector

form ~v such that

s′�Q
−1
S (ΛS − Eb) (I − ΛSL)−1QSs�~v = 0

If ~v is a white noise process, then QSs�~v is also white noise, (I − ΛSL)−1QSs�~v is

AR(1), and

E (I − ΛSL)−1QSs�~v = ΛS (I − ΛSL)−1QSs�~v

satisfying the property.
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D.2 Sub-rational Expectations

This section describes several types of “sub-rational” expectations. These expecta-

tions feature behavioral biases and predictable forecast errors. Yet, they preserve

several features of rational expectations: they are forward-looking, and depend on

equilibrium behavior in the modeled economy.

D.2.1 Mis-extrapolation

“Mis-extrapolation” modifies the rational expectation by the scalar θ > 0:

EME,θ
t xt+1 = θEtxt+1

This form of expectations is known by different names in different cases. In Gabaix

(2020), agents form expectations by “cognitive discounting”, which is carefully mi-

crofounded, but manifests in reduced form as forecasting with 0 < θ < 1. Angeletos,

Huo, and Sastry (2021) suggest that to fit facts about the term structure of expecta-

tions, it may be worth considering “overextrapolation” where θ > 1.

The operator form of mis-extrapolation is

EME,θ = θE =


0 θ 0 0 ...

0 0 θ 0 ...

0 0 0 θ ...
...

...
...

...
. . .


with spectral radius

r(EME,θ) = θr(E) = θ

where the first step follows from the absolute homogeneity of spectral radii.

An eigenvalue λ of EME,θ satisfies

λyt = EME,θ
t [yt+1]

= θEt[yt+1]

which is solved by eigenseries

yt =
λ

θ
yt−1 + ωt
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Such a series may not satisfy Sunspot Admissibility in general, but will for simply

stable models where |λ
θ
| < 1 so that yt is stationary.

D.2.2 Diagnostic Expectations

Diagnostic expectations (Bordalo, Gennaioli, and Shleifer, 2018) are growing in popu-

larity, have many appealing properties, and describe a variety of empirical patterns.16

This section demonstrates another useful property: the spectral radius is 1. This

implies that models with diagnostic expectations have unique equilibria if they would

also have unique equilibria under rational expectations.

The diagnostic expectation is given by

ED,θ,φt xt+1 = Etxt+1 + θ(Etxt+1 − Et−φxt+1)

where θ controls the degree of overreaction to recent news, while the integer φ controls

the number of recent periods to which agents overreact. The operator representation

is

ED,θ,φ = E + θ(E − LφEφ+1)

=



0 1 + θ 0 0 0 ...
...

. . .
. . .

. . .
. . .

. . .

0 ... 0 1 + θ 0
. . .

0 ... 0 0 1 + θ
. . .

...
. . .

. . .
...

. . .
. . .


−



0 0 0 0 0 ...
...
. . .

. . .
. . .

. . .
. . .

0 ... 0 0 0
. . .

0 ... 0 0 θ
. . .

...
. . .

. . .
...

. . .
. . .


=



0 1 + θ 0 0 0 ...
...

. . .
. . .

. . .
. . .

. . .

0 ... 0 1 + θ 0
. . .

0 ... 0 0 1
. . .

...
. . .

. . .
...

. . .
. . .


=



0 ϑD,θ,φ1 0 0 0 ...

0 0 ϑD,θ,φ2 0 0
. . .

0 0 0 ϑD,θ,φ3 0
. . .

0 0 0 0 ϑD,θ,φ4

. . .
...

. . .
. . .

...
. . .

. . .


16See for example Bordalo, Gennaioli, Porta, and Shleifer (2019), Bordalo, Gennaioli, Ma, and

Shleifer (2020), or Chodorow-Reich, Guren, and McQuade (2021).
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where the diagonal series is given by

ϑD,θ,φi =

1 + θ i ≤ φ

1 i > φ

The diagnostic expectation operator is not Toeplitz, so its spectral radius is not

as straightforward as many of the other expectation operators. In these cases, it is

sometimes possible to derive the spectral radius analytically by characterizing powers

of the operator. The iterated expectation EkD,θ,φ is zero except for the kth diagonal.

The largest entry is (1 + θ)k when k ≤ φ, and (1 + θ)φ otherwise. The norm of a

diagonal operator is the largest magnitude entry, implying

||EkD,θ,φ|| =

|(1 + θ)k| k ≤ φ

|(1 + θ)φ| k > φ

By Gelfand’s formula (26) the spectral radius is

r(ED,θ,φ) = lim
k→∞
||EkD,θ,φ||

1
k = lim

k→∞
|(1 + θ)φ|

1
k = 1

Under Diagnostic Expectations, Sunspot Admissibility may not be satisfied in

general,17 but will be for simply stable models. An eigenvalue λ of ED,θ,φ satisfies

λyt = ED,θ,φt [yt+1]

= Et[yt+1] + θ (Et[yt+1]− Et−φ[yt+1])

To find the eigenseries, consider the moving average representation yt =
∑∞

j=0 ajL
jωt.

The coefficients are related by

λaj−1 =

(1 + θ)aj j ≤ φ

aj j > φ

17However, I suspect that Sunspot Admissibility is always satisfied for Diagnostic Expectations:
I have found no counterexamples, but cannot prove the conjecture.
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Normalizing a0 = 1 implies

aj =


(

λ
1+θ

)j
j < φ(

λ
1+θ

)φ
λj−φ j ≥ φ

so the two components of the moving average representation are

φ−1∑
j=0

ajL
j =

1

1− λ
1+θ

L
−
(

λ

1 + θ
L

)φ
1

1− λ
1+θ

L

∞∑
j=φ

ajL
j =

(
λ

1 + θ
L

)φ
1

1− λL

and the eigenseries is

yt =

(
1−

(
λ

1+θ
L
)φ

1− λ
1+θ

L
+

(
λ

1+θ
L
)φ

1− λL

)
ωt

This is a stationary ARMA(2,φ + 1) time series for any stable λ, except in the case

of φ = 1 where it reduces to an ARMA(1,1):

[φ = 1] : yt =
1− λθ

1+θ
L

1− λL
ωt

D.2.3 Delayed Observation

Many macroeconomic time series are only measured and publicly released with a

delay. “Delayed Observation” expectations reflect this constraint. Forecasters cannot

use the current value of a time series; they forecast rationally, but only using data

realized in the past. This structure has a representation as a behavioral expectation,

even though agents are fully rational.

The “DO”-type expectation is given by

EDOt xt+1 = Et−1xt+1

which in operators is

EDO = LE2
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=


0 0 0 0 ...

0 0 1 0 ...

0 0 0 1 ...
...

...
...

...
. . .


Iterating EDO multiple times gives

EkDO =
(
LE2

)k
= LEk+1

because EL = I. Additionally, the norm is ||LEk+1|| = 1, because the norm of a

diagonal operator is the supremum of the magnitude of its entries. This allows the

spectral radius is found by Gelfand’s formula (26):

r(EDO) = lim
k→∞
||EkDO||

1
k = lim

k→∞
|1|

1
k = 1

The Sunspot Admissibility condition is always satisfied for DO-type expectations.

Any stable eigenvalue λ is also an eigenvalue of EDO, which satisfies

λyt = EDOt [yt+1]

= Et−1[yt+1]

which is solved by eigenseries

yt = λyt−1 + ωt−1

Just as rational expectations sunspot equilibria are created with any white noise

process, delayed observation sunspot equilibria can be created with any lagged white

noise process.

D.2.4 Sticky Information

Mankiw and Reis (2002) introduce “Sticky Information” in which agents only update

their forecasts with some probability θ ∈ (0, 1). The Sticky Information expectations

are given by

ESI,θt xt+1 = θ

∞∑
j=0

(1− θ)jEt−jxt+1
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In Mankiw and Reis’ original framework, no individual forms expectations this way.

Rather, these expectations govern the average expectations in the economy.18 More-

over, in their original application these expectations are not used to forecast a process

xt+1 but rather to nowcast an optimal price-setting decision. Still, other applications

use Sticky Information to replace rational expectations in more general settings.

When forecasting xt+1, the operator form is

ESI,θ = θ
∞∑
j=0

(1− θ)jLjE j+1

= θ


0 1 0 0 ...

0 0 1 0 ...

0 0 0 1 ...
...

...
...

...
. . .

+θ


0 0 0 0 ...

0 0 1− θ 0 ...

0 0 0 1− θ ...
...

...
...

...
. . .

+θ


0 0 0 0 ...

0 0 0 0 ...

0 0 0 (1− θ)2 ...
...

...
...

...
. . .

+...

=


0 ϑSI,θ1 0 0 ...

0 0 ϑSI,θ2 0
. . .

0 0 0 ϑSI,θ3

. . .
...

. . .
. . .

. . .
. . .


where the diagonal series is given by

ϑSI,θi = θ
i−1∑
k=0

(1− θ)k

By assumption θ ∈ (0, 1) so this sequence satisfies ϑSI,θj ∈ (0, 1) with limit

lim
j→∞

θ

j∑
k=0

(1− θ)k = 1

As with diagnostic expectations, this operator is not Toeplitz, but the spectral

radius can be found using Gelfand’s formula (26). The iterated expectation EbSI,θ has

18Closely related is the “6D bias” (Gabaix and Laibson, 2001) where agents deterministically
update every D periods, instead of stochastically. In this case, the operator representation is E6D =∑D−1

h=0
1
DL

hEh+1. As with the sticky information formulation, the 6D bias operator is sub-rational,
has a unit spectral radius, and SSA is satisfied for all simply stable models.
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only one non-zero diagonal Dk with entries given by

Dk,i =
k−1∏
j=0

ϑSI,θi+j

This operator is diagonal, so the norm is given by

||EkSI,θ|| = sup
i
|
k−1∏
j=0

ϑSI,θi+j |

= lim
i→∞
|
k−1∏
j=0

ϑSI,θi+j | = 1

Thus by Gelfand’s formula the spectral radius is

r(ESI,θ) = lim
k→∞
||EkSI,θ||

1
k = 1

An eigenvalue λ of ESI,θ satisfies

λyt = EME,θ
t [yt+1]

= θ
(
Et[yt+1] + (1− θ)Et−1[yt+1] + (1− θ)2Et−2[yt+1] + ...

)
The eigenseries for these expectations is complicated. Consider the moving aver-

age representation yt =
∑∞

j=0 ajL
jωt. The operator representation implies that the

eigenseries associated with eigenvalue λ must satisfy the recursive relationship

λaj−1 = ϑSI,θj aj

so any particular coefficient is given by

aj =
λj∏j

k=1 ϑ
SI,θ
k

a0

Therefore a stationary eigenseries exists if limj→∞
λj∏j

k=1 ϑ
SI,θ
k

= 0, which is the case if

|λ| < limj→∞ ϑ
SI,θ
j = 1, i.e. for any stable λ.
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D.3 Heuristic Expectations

Not all forms of expectations are forward-looking. Before the rational expectations

revolution, modeled expectations were often backwards-looking heuristics. These

types of expectations depend on current and past realizations with an assumed struc-

ture.

D.3.1 Adaptive Expectations

A classic heuristic is the Adaptive Expectations of Cagan (1956) and Friedman (1957).

The Adaptive Expectation of a time series is given recursively by

EAE,θt xt+1 = θxt + (1− θ)EAE,θt−1 xt

which in operator notation is

EAE,θ = θ + (1− θ)LEAE,θ

=
θ

1− (1− θ)L

= θ



1 0 0 0 ...

1− θ 1 0 0 ...

(1− θ)2 1− θ 1 0 ...

(1− θ)3 (1− θ)2 1− θ 1 ...
...

...
...

...
. . .


This operator is Toeplitz, so its spectral radius is equal to the absolute value of

the largest entry:

r(EAE,θ) = θ

The Sunspot Admissibility condition is never satisfied for Adaptive Expectations:

EAE,θ is Toeplitz and lower triangular, so by Property 3, it has no eigenvalues.

D.3.2 Naive Heuristic

Brock and Hommes (1997) consider a “naive” heuristic in which agents forecast using
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current or past realizations:19

ENH,θ [xt+1] = xt−θ

for θ ≥ 0.

The corresponding expectation operator is

ENH,θ = Lθ

with spectral radius

r(ENH,θ) = r(Lθ) = 1

The Sunspot Admissibility condition is never satisfied for the Naive Heuristic: Lθ

is Toeplitz and lower triangular, so by Property 3, it has no eigenvalues.

D.3.3 Behavioral Learning

Tuinstra (2003) and Hommes and Zhu (2014) consider “Behavioral Learning,” where

agents forecast using an incorrectly specified AR(1) model, which may not match the

rational forecast if the true model is not AR(1). However, this mapping is not a linear

operator, so the uniqueness theorems will not apply.

Still, it may be valuable to understand the properties of these expectations for

an arbitrary AR(1) model, rather than the endogenous optimally-estimated model.

Expectations of this form are given by

EBL,θ [xt+1] = θxt

where θ is the first autocorrelation of the xt time series. The expectation operator

for time series x is

EBL,θ = θI

with spectral radius

r(EBL,θ) = |θ| < 1

which is necessarily less than one.

19In their original work and many following papers, Brock and Hommes name this heuristic “naive
expectations”, which I relabel to avoid confusion with the naivete discussed in Section 6.
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The Sunspot Admissibility condition is never satisfied for Behavioral Learning:

EBL,θ is Toeplitz and lower triangular, so by Property 3, it has no eigenvalues.

D.3.4 Natural Expectations

Fuster, Laibson, and Mendel (2010) consider “Natural Expectations”, which is a linear

combination of rational expectations and some “intuitive” form of forecasting, with

relative weights controlled by the parameter φ. In their original application, Fuster

et al assume that the intuitive model is a parsimonious model, estimated on the

equilibrium time series. For example, agents might estimate an AR(1), while the true

process is a higher order ARMA. As with Behavioral Learning, this mapping is not a

linear operator, so the uniqueness theorems will not apply, but it may be valuable to

understand the properties of these expectations for any given AR(1) intuitive model,

rather than the endogenous optimal model.

I approximate the Natural Expectations structure by assuming that the intuitive

forecasting is given by some arbitrary heuristic AR(1), instead of being determined

in equilibrium. These expectations are

ENE,θ,φxt+1 = φθxt + (1− φ)Etxt+1

where φ ∈ (0, 1) denotes the relative weight placed on the intuitive forecast, and θ

is the autocorrelation of the heuristic AR(1). Were φ = 1, the expectations would

simplify to Behavioral Learning, but with φ 6= 1 Natural Expectations have more

interesting spectra, e.g. eigenvalues exist.

The operator form is

ENE,θ,φ = φθ + (1− φ)E

=



φθ 1− φ 0 0 ...

0 φθ 1− φ 0 ...

0 0 φθ 1− φ ...

0 0 0 φθ ...
...

...
...

...
. . .


This operator is Toeplitz, and the largest magnitude entry is either φθ or 1 − φ.

66



Accordingly, the spectral radius is

r(ENE,θ,φ) = max(|φθ|, 1− φ)

An eigenvalue λ of ENE,θ,φ satisfies

λyt = ENE,θ,φt [yt+1]

= φθyt + (1− φ)Et[yt+1]

which is solved by eigenseries

yt =
λ− φθ
1− φ

yt−1 + ωt

Such a series may not satisfy Sunspot Admissibility in general, but will for simply

stable models where |λ−φθ
1−φ | < 1 so that yt is stationary.

D.3.5 Trend Following

Hommes, Massaro, and Weber (2019) consider “Trend Following” expectations, de-

fined as

ETF,θt xt+1 = xt−1 + θ(xt−1 − xt−2)

where θ > 0 may be larger or small than 1, which they label as strong or weak trend

following respectively.

The operator form is

ETF,θ = (1 + θ)L− θL2

= θ



0 0 0 0 ...

1 + θ 0 0 0 ...

−θ 1 + θ 0 0 ...

0 −θ 1 + θ 0 ...
...

...
...

...
. . .


This operator is Toeplitz, so its spectral radius is the largest absolute entry:

r(ETF,θ) = 1 + θ
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The Sunspot Admissibility condition is never satisfied for TF-type expectations:

ETF,θ is Toeplitz and lower triangular, so by Property 3, it has no eigenvalues.

D.3.6 Anchoring and Adjustment

Hommes, Massaro, and Weber (2019) consider another heuristic “Anchoring and

Adjustment” which includes a term for the observed long-run average, motivated by

Tversky and Kahneman (1974). Over time, the average goes to zero, leaving the

limiting form of these expectations:

EAA,θt xt+1 = θxt−1 + (xt−1 − xt−2)

EAA,θ = (1 + θ)L− L2

= θ



0 0 0 0 ...

1 + θ 0 0 0 ...

−1 1 + θ 0 0 ...

0 −1 1 + θ 0 ...
...

...
...

...
. . .


Again, this operator is Toeplitz, so its spectral radius is the largest absolute entry:

r(EAA,θ) = 1 + θ

The Sunspot Admissibility condition is never satisfied for AA-type expectations:

EAA,θ is Toeplitz and lower triangular, so by Property 3, it has no eigenvalues.

D.3.7 Heterogeneous Expectations with a Heuristic

Models with heterogeneous expectation formation can be expressed as a series-agnostic

operator if agents’ expectations can be aggregated when writing the dynamic model.

This section considers such an example from Branch and McGough (2004).

A fraction 1 − φ of agents have rational expectations. The remaining fraction φ

form expectations with a heuristic: Ẽ[xt+1] = θxt−1. The average in the economy

defines the HEH-type expectations:

EHEH,θ,φ[xt+1] = (1− φ)E[xt+1] + φθxt−1
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The operator form is

EHEH,θ,φ = (1− φ)E + φθL

=



0 1− φ 0 0 ...

φθ 0 1− φ 0 ...

0 φθ 0 1− φ ...

0 0 φθ 0 ...
...

...
...

...
. . .


This operator is Toeplitz, and the largest magnitude entry is either 1 − φ or φθ.

Accordingly, the spectral radius is

r(EHEH,θ,φ) = max(1− φ, |φθ|)

An eigenvalue λ of EHEH,θ,φ satisfies

λyt = EHEH,θ,φt [yt+1]

= φθyt−1 + (1− φ)Et[yt+1]

which implies an AR(2) eigenseries:

yt+1 =
λ

1− φ
yt −

φ

1− φ
θyt−1 + ωt

This time series is stationary if the roots of the polynomial z2− λ
1−φz+ φ

1−φθ are inside

the unit disc.

Therefore, such a series may not satisfy Sunspot Admissibility in general, but will

for simply stable models where |θ| < 1−φ
φ

and |λ| < 1−φ+(φθ) so that the eigenseries

yt is stationary.

D.4 Incomplete Information

Incomplete information is unlike the behavioral expectations considered thus far.

Behavioral expectations are not rational, and the forecasts are spanned by the entire

set of fundamental shocks ωt. However, when information is incomplete, expectations
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may be rational, but are spanned by a different set of shocks: either noise shocks are

added, or some linear combination of shocks is removed.

Still, in some simple cases, incomplete information can be represented as a behav-

ioral expectation by considering the component that is spanned by the fundamental

shocks alone. Many rich information structures may not be represented this way,

such as when agents information set is endogenous. But this section explores some

tractable cases where the incomplete information forecasts have a representation as

behavioral forecasts.

D.4.1 Noisy Signals

Under this structure, agents form expectations about future variables using noisy

signals of the fundamental shocks. The friction only affects expectation formation:

the shocks can affect non-expectational variables and equations as usual, even if this

introduces internal inconsistency in agents’ information sets. The model is written

as if all agents receive the same noisy signal. If instead agents receive private signals,

then the expectations I derive represent the average agent.

I assume that when forming expectations, agents do not use the true values of the

shocks ωt. Instead, they observe a noisy signal st given by

st = ωt + νt (38)

where the noise term is orthogonal to the shocks and i.i.d. distributed νt ∼ N(0, θ).

This structure generalizes when there is more than one shock so long as σ2
ν is the

same for all shocks. Otherwise, expectations no longer satisfy Property 1.

Agents forecast by

ENSt [Xt+h] = Et[Xt+h|{st−j}∞j=0]

= Et[
∞∑
j=0

Xj+hωt−j|{st−j}∞j=0] =
∞∑
j=0

Xj+hEt[ωt−j|st−j]

=
∞∑
j=0

Xj+h
1

1 + θ
st−j

To express the expectations with noisy signals as a behavioral expectation, con-
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sider only the effects of the fundamental shocks ωt. This representation is:

E[ENSt [Xt+h]|{ωt−j}∞j=0] = E[E[Xt+h|{st−j}∞j=0]|{ωt−j}∞j=0]

= E

[
∞∑
j=0

Xj+h
1

1 + θ
st−j|{ωt−j}∞j=0

]
=
∞∑
j=0

Xj+h
1

1 + θ
ωt−j =

1

1 + θ
Et[Xt+h]

which in operator form is

ENS =
1

1 + θ
E

with spectral radius

r(ENS) = r(
1

1 + θ
E) =

1

1 + θ

An eigenvalue λ of ENS,θ satisfies

λyt = ENS,θt [yt+1]

=
1

1 + θ
Et[yt+1]

which is solved by eigenseries

yt = λ(1 + θ)yt−1 + ωt

Such a series may not satisfy Sunspot Admissibility in general, but will for simply

stable models where |λ(1 + θ)| < 1 so that yt is stationary. θ > 0 so the condition

can be rewritten as |λ| < 1
1+θ

.

D.4.2 Beauty Contests

This section considers a “beauty contest,” a game where forecasters face both incom-

plete information and strategic complementarity that warps their forecasts. Dynamic

beauty contests further warp the forecasts made in models with noisy signals. Wood-

ford (2003) is the classic example of this type of model.

When forecasting, agents would like to use the true values of ωt, but can only use

noisy signals thereof, as in Section D.4.1. Agent i receives the noisy public signal

given by equation (38) as well as a noisy private signal pit given by

pit = ωt + ξit
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where the noise term ξit ∼ N(0, σ2
ξ ) is i.i.d. across agents.

Agents literally have rational expectations, but do not make rational forecasts.

Rather, they care about how their own forecasts compare to the population average,

and in equilibrium appear to feature a behavioral bias. They forecast by

EBCit [Xt+h] =
∞∑
j=0

Xj+hEBCit [ωt−j]

Where the backcast EBCit [ωt−j] is given by

EBCit [ωt−j] = (1− θBC)Eit[ωt−j] + θBCEit[ĒBCt [ωt−j]]

The rational expectation conditional on the two signals is

E[ωt|pit, st] =
θ

θ + σ2
ξ + θσ2

ξ

pit +
σ2
ξ

θ + σ2
ξ + θσ2

ξ

st

or

E[ωt|pit, st] = bppit + bsst

Solving the beauty contest requires finding the unknown coefficients ap and as in

EBCi,t+j[ωt] = appit + asst. Plug the rational expectation into the backcast:

EBCi,t+j[ωt] = (1− α)(bppit + bsst) + αEi,t+j[apωt + asst]

appit + asst = (1− α + αap)(bppit + bsst) + αasst

collect coefficients:

ap = (1− α + αap)bp

=⇒ ap =
(1− α)bp
1− αbp

as = (1− α + αap)bs + αas

=⇒ as = bs +
α

1− α
apbs

=
bs

1− αbp
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The average expectation is

ĒBCt+j[ωt] = apwt + asst

so the projection onto wt is

apwt + aswt =

(
(1− α)bp
1− αbp

+
bs

1− αbp

)
wt

=
(1− α)bp + bs

1− αbp
wt

=
(1− α)θ + σ2

ξ

(1− α)θ + σ2
ξ + θσ2

ξ

wt

Or, to match Huo and Pedroni (2020) intuitive finding that this is just a rescaling of

the variance of the private signal noise:

=
θ + σ2

ξ/(1− α)

θ + σ2
ξ/(1− α) + θσ2

ξ/(1− α)
wt

=
θ + φ

θ + φ+ θφ
wt

where φ ≡ σ2
ξ/(1 − α), which may be positive or negative. Thus the behavioral

expectation is written as

EBC,θ,φt [yt+1] =
θ + φ

θ + φ+ θφ
Et[yt+1]

which is the average expectation in the motivating beauty contest.

The operator representation is

EBC =
θ + φ

θ + φ+ θφ
E

with spectral radius

r(EBC) = r(
θ + φ

θ + φ+ θφ
E) =

θ + φ

θ + φ+ θφ
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An eigenvalue λ of ENS,θ satisfies

λyt = EBC,θ,φt [yt+1]

=
θ + φ

θ + φ+ θφ
Et[yt+1]

which is solved by eigenseries

yt = λ
θ + φ+ θφ

θ + φ
yt−1 + ωt

Such a series may not satisfy Sunspot Admissibility in general, but will for simply

stable models where |λ θ+φ+θφ
θ+φ

| < 1 so that yt is stationary. φ may be negative, so the

condition can be rewritten as |λ| < | θ+φ
θ+φ+θφ

|.

D.4.3 Signal Precision Overconfidence

This form of expectations marries incomplete information with a behavioral bias.

Agents receive the noisy signal (38), but misperceive how noisy it is. The noise

term is distributed νt ∼ N(0, θ), but agents mistakenly believe it is distributed νt ∼
N(0, θ/φ). Typically, agents are considered to be overconfident about the signal’s

precision so that φ > 1, but any positive value is allowable.20

Similar to Section D.4.1, agents backcast the shocks ωt by

ESPO[ωt|st] =
1

1 + θ/φ
st

so the coefficient on ωt alone is also 1
1+θ/φ

. Therefore the expectation operator is

ESPO =
1

1 + θ/φ
E

with spectral radius

r(ESPO) = r(
1

1 + θ/φ
E) =

φ

φ+ θ

20A large literature following Odean (1998), Daniel, Hirshleifer, and Subrahmanyam (1998),
Daniel, Hirshleifer, and Subrahmanyam (2001) and others study agents who are overconfident about
the precision of their private signals, but also observe public signals. Huo and Pedroni (2020) show
that beauty contest models with both types of signals can be re-parameterized as a model where
agents only observe private signals, as in this section.
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Noisy signals lower the spectral radius relative to full information, but overconfidence

raises the spectral radius relative to the rational expectations case of Section D.4.1.

An eigenvalue λ of ESPO,θ,φ satisfies

λyt = ESPO,θ,φt [yt+1]

=
φ

φ+ θ
Et[yt+1]

which is solved by eigenseries

yt = λ
θ + φ

φ
yt−1 + ωt

Such a series may not satisfy Sunspot Admissibility in general, but will for simply

stable models where |λ θ+φ
φ
| < 1 so that yt is stationary. θ > 0 and φ > 0, so the

condition can be rewritten as |λ| < φ
θ+φ

.
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