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Abstract

Interatomic potentials learned using machine learning methods have been suc-
cessfully applied to atomistic simulations. However, accurate models require
large training datasets, while generating reference calculations is computationally
demanding. To bypass this difficulty, we propose a transfer learning algorithm
that leverages the ability of graph neural networks (GNNs) to represent chemical
environments together with kernel mean embeddings. We extract a feature map
from GNNs pre-trained on the OC20 dataset and use it to learn the potential energy
surface from system-specific datasets of catalytic processes. Our method is further
enhanced by incorporating into the kernel the chemical species information, result-
ing in improved performance and interpretability. We test our approach on a series
of realistic datasets of increasing complexity, showing excellent generalization and
transferability performance, and improving on methods that rely on GNNs or ridge
regression alone, as well as similar fine-tuning approaches.

1 Introduction

Atomistic simulations have become a pillar of modern science and are pervasively used in many
areas of physics, chemistry, and biology. Among these techniques, molecular dynamics plays a
prominent role. This method simulates the time evolution of a system of atoms by integrating
Newton’s equation of motion [1]]. The forces acting on the particles are determined from a model
for the interactions, called the potential energy surface (PES), on whose accuracy the reliability of
the simulation depends. For a long time, the interactions were modeled in a rather empirical, and of
course, not very accurate way [} 2]]. A significant step forward was made with the introduction of ab
initio molecular dynamics in which the interactions are computed on the fly from accurate electronic
structure calculations [3, 4]. This implies solving at every step the Schroedinger equation, typically
with the use of some approximation such as the popular Density Functional Theory (DFT) scheme [3]].
This approach is much more accurate but at the same time more computationally expensive, limiting
the system size (i.e. the number of atoms) and the time scale that can be simulated.

Starting with the work of Behler and Parrinello [[6], machine learning potentials have emerged as
promising candidates to alleviate the tension between accuracy and efficiency [7, 8]. They regress the
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potential energy, as a function of the atomic positions and the chemical species, on a (large) set of
expensive ab initio calculations. Once successful, this strategy results in an ab initio-quality model of
the potential energy at a fraction of the cost, speeding up simulations by orders of magnitude.

For this procedure to be successful, however, a good representation of the physical system, including
its symmetries, is necessary. The use of handcrafted physical descriptors [[6,9H11] is often a laborious
procedure that limits applicability to systems with few chemical species. In recent years, graph
neural networks (GNNs) have proven to be a viable alternative for directly representing the chemical
environment, capable of scaling to large datasets with numerous chemical species and encoding
symmetries directly in the architecture, e.g., through SE(3)-equivariant layers [12H16]]. Nevertheless,
obtaining an accurate model for real-life applications is as of today still a challenging task, requiring
high-quality data samples which are scarce and/or very expensive to obtain.

As shown by the recent advancements in large language modeling [[17} [18] and, before that, image
classification [19, 20], fine-tuning a pre-trained large-scale representation of the data provides a
highly effective paradigm to solve downstream tasks for which only a handful of data points are
available. This approach paved the way for the concept of foundation models [21], at the core of
the current generative Al revolution. Mirroring these developments, in this work we leverage the
representation power of GNNis trained on large datasets of molecular configurations. In particular, we
rely on the Open Catalyst dataset [22]], which contains DFT relaxations for ~1.2M catalytic systems,
totaling over 260M data points. We show how, by exploiting the availability of this heterogeneous
dataset, it is possible to learn interatomic potentials for specific systems taken from realistic chemical
applications in a fast and data-efficient manner.

Contributions This paper makes the following contributions:

* We propose a transfer learning algorithm, which we refer to as mean embedding kernel ridge
regression (MEKRR), for modeling the potential energy surface of atomic systems. MEKRR
combines GNN representations pre-trained on large datasets with fine-tuning via kernel
mean embeddings. This combination allows to satisfy the physical symmetries inherent
to atomistic systems. Specifically, GNN features take care of roto-translational invariance,
while kernel mean embeddings are chosen to satisfy the permutational symmetry.

* We introduce a new kernel function in the context of modeling potential energy surfaces,
which exploits chemical species information. This shows superior performance and facili-
tates monitoring the chemical evolution of the system.

* We demonstrate excellent transferability and generalization performance on increasingly
complex datasets. Remarkably, they include configurations sampled out-of-distribution with
respect to the GNN pre-trained representation.

Related work There is a long list of relevant works (see also [7] and references therein) on
representing the potential energy surface by machine learning methods. In particular, the first models
employed a set of physical descriptors in combination with either neural networks [6] or kernel
methods [23H25]. Later, it was proposed to model with neural networks the descriptors as well [26].
Recently, graph networks have been used to directly represent physical systems and regress energy
and forces [12} [15, 27, [28]]. A combination of GNN features and kernel-based methods has been
investigated in [29], but without doing transfer learning from a larger dataset.

In terms of transfer learning, there is a long line of work in transferring deep representations on
images, see [19,120] and references therein. Current progress in few-shot image classification, where
algorithms can adapt quickly to new classification problems, can partially be attributed to adding a
preprocessing step where each image is mapped through a meta-learned or pre-trained representation,
see e.g. [30H36]. In particular, [36] employs kernel ridge regression (KRR) on top of a meta-learned
feature map. More recently, the same ideas have been applied to language modeling (see e.g. [17,[18])),
revolutionizing the field. Pre-training strategies have started very recently to emerge also in the
context of interatomic potentials, as a way to interpolate across different levels of theory [37H39] or
to exploit the release of large and heterogeneous datasets such as OC20 [40].

Organization In Section [2| we specify the machine learning problem we are aiming to solve. In
Section [3| we introduce the kernel mean embedding framework together with KRR and in Section 4]
we introduce our method MEKRR. In Section [5| we validate our method on a variety of realistic
datasets of increasing complexity. Finally, in Section [6] we conclude and outline future directions.



2 Learning the potential energy surface from atomistic simulations

2.1 Setting

We consider systems composed of n atoms and S different chemical species, described via one-hot-
encoding over [S], where [S] = {1,...,S}. Each atom is described by its Euclidean position r € R?
and its chemical species z € {0, 1}°. We denote a state of the system by x = (r;, z;)", = (R, Z) €
X using the design matrices R € R"*3 and Z € {0,1}"*5.

The quantity we want to regress is the potential energy, which is a scalar function £ : X — R. The
target values E} are calculated by querying the ab initio method of choice, DFT in the case of the
0OC20 dataset. A training dataset is therefore composed by a sequence of T" atomic configurations
(x¢)L_, together with the corresponding labels (F;)7_;.

The physics of the system posits that any estimator of the energy f : X — R should possess
certain invariant properties reflecting the underlying physical symmetries. These invariances are
roto-translational invariance with respect to the position vectors and permutation-invariance within
each group of chemical species. In addition, the energy estimator should be curl-free and smooth [27].
A wealth of previous works introduced deep learning architectures incorporating these invariances
by design [e.g. 16, 27, 41, 142]. Our transfer-learning scheme works by exploiting these invariant
architectures so that the final fine-tuned estimator is invariant as well.

2.2 Objective function

In order to learn potential energies, one considers models f,, from a set of functions (e.g., a repro-
ducing kernel Hilbert space or neural network functions) parameterized by w and fitted to a given
dataset (¢, E;)L_,. This is achieved by minimizing an objective function, which can be split into a
data-fitting term and a regularizer which encourages functions of low complexity.

Typically, the data fitting term is a least squares loss between outputs and predictions. In this case the
regularized empirical risk minimization reads

T

Rw) = 3 (1= 1B = fulBe 20 + 3|1 Fe + Vi fulBes Z)IP) +020w), (1)
t=1

for some regularizer ) and regularization parameter A > 0 and a loss weight v € [0,1]. A loss
weight v # 0 is used whenever the forces F'(z,7) = —V,. E(z) are regressed alongside the energy.
Typically we will use Q(w) = ||w]||” as the regularizer, but in Sectionwe extend this to incorporate
additional information. Since in the experiments discussed below we focus on energy prediction, we
lety = 0.

3 Kernel ridge regression and kernel mean embeddings

Our method is designed around kernel methods, a well-established tool at the heart of most non-
parametric machine learning algorithms [43} 44]. A kernel K is any positive definite function (see 44,
Definition 4.15) K : X x X — R on the input space X. For any kernel it exists a feature space Hx
and a feature map ¢: X — Hx such that K (z,2') = (¢p(x), ¢p(z')) forall z, 2’ € X.

Kernel ridge regression is a supervised learning algorithm that parametrize the dependence between
inputs x € X and scalar outputs y € R asy = (w, ¢(x)) for some vector w in the feature space. Given
a dataset (x;)Z_; € XT of T input points, and a corresponding dataset of outputs (y;)7_; € R7,
KRR learns a functional relation between inputs and outputs by solving the least squares minimization
problem

i = argnin { 37 ((w0(00) — 0+ Al |- @

wEH =1
A basic result known as the representer theorem (see e.g. 44, Theorem 5.5) prescribe that the
solution of (@) is just a linear combination of the feature map evaluated at the training points, that is

W= Zthl ct¢p(y) for some (¢;)7; € RT. The representer theorem and the fact that K (z, ') =
(¢p(x), p(2")) also imply that predicting any new point z with KRR is as simple as evaluating



(w, p(x)) = Zthl ce{d(xe), p(x)) = Zthl ¢t K (x4, 2). KRR can also be readily extended [43] to
regress the gradient of y with respect to z, a technique used e.g. in [29]] to concurrently learn potential
energies and forces.

In the standard case in which the input space is a subset of an Euclidean space X C R?, many
kernels have been designed; see, for instance, 46, Section 4.2. This notwithstanding, kernel functions
can be defined on arbitrary input spaces X . In the case of atomic configurations, the potential
energy is invariant under the permutation of atoms with the same chemical species. It is therefore
advantageous to design kernels able to preserve such symmetry. We now introduce the concept of
kernel mean embeddings [47]], which allow us to define permutationally-invariant kernels over atomic
configurations.

Kernel mean embeddings consider the case in which inputs x are sets of points living in an Euclidean
space z = {r; € R%: i < n}. For example, an atomic configuration is a set containing the position
of each atom in the system (d = 3). For any feature map () and the corresponding kernel function
k(r,r") = (x(r),%(r")) on points € R? we can define a feature map acting on the whole set z as

$(x) = Co Y ()

r;ET

with C,, > 0 a positive normalization constant. We note in passing that the value of C,, depends on
the chemical property that we want to learn. Indeed, setting C;, = 1 returns extensive properties such
as the potential energy, while C,, = 1/n is appropriate to model intensive ones. This allows us to
define kernels on sets  as

K(w,a') = ($(z),§(2')) = CoCr Y ((ri),(r})) = CoCur Y k(ri,1}). (€

ri€ET, ri €T,
’ ’ ’ ’
r;€x r;€x

Using the definition of kernel mean embeddings inside the KRR algorithm enables us to
learn scalar functions over sets of points. In the following section, we will combine these algorithms
together with pre-trained feature maps to define a principled and efficient method to learn potential
energy surfaces from data.

4 Method

Our method relies on pre-trained GNN representations of chemical environments and uses them as
feature maps to define a kernel mean embedding (3) acting on atomic configurations. In practice, we
do so by leveraging pre-trained feature maps on the OC20 dataset [22]. Once a kernel based on mean
embeddings is defined, we can use KRR to regress the potential energy from sampled data (see Fig.[I]
for a diagram of the method). In this respect, we note that our method shares similarities with the
idea behind foundation models [21]], where a representation trained on large datasets is transferred to
novel settings by means of fine-tuning. While in this work we show the performance of pre-trained
representations based on SCN [14] and SchNet [27]], any other GNN architecture is a perfectly valid
choice, and can be used in place of ours without the need of further adjustments.

4.1 GNN representations of chemical environments

SCN and SchNet are instances of graph neural networks (GNNs) [48450], a class of architectures
designed to learn mappings over graphs. A graph G = (V,€) is a collection of n nodes V and
edges £ C V x V between pairs of nodes. Representing the chemical environment with GNN's
involves a preprocessing step that turns a configuration x into a graph by associating each atom
to a node and constructing the edges according to the matrix of pairwise distances between atoms.
Each node 7 is then initialized to a feature vector h; encoding the chemical species of the atom via a
(possibly learnable) embedding layer. Each GNN layer then updates the node features via a nonlinear
message-passing scheme

hi = go(hi, ng(hi, hyj)).
JEN(3)
Here, N (i) is the neighborhood of 7 i.e. the set of nodes connected to 4 through an edge, gy is a
learnable vector-valued function such as an MLP and 7y is a message-passing function. A graph



a. Atomic feature maps from a pretrained GNN b. Transfer learning via KRR

Figure 1: Diagram of MEKRR.

neural network is formed by concatenating multiple message-passing layers. The weights of the
embedding and GNN layers are then learned in an end-to-end fashion typically using first-order
optimization.

Among the many GNN architectures available [51]], a growing number is being developed to specialize
in computational chemistry settings, see for instance [16} [52H56]).

4.2 Our method: mean embeddings of GNN representations

We are now ready to combine together the techniques described so far and describe in full detail our
method. Starting with an atomic configuration x, we pass it to a pre-trained GNN representation to
get a collection of node features

x> H(z) = (hy(@)),

In the case of equivariant GNNs we additionally need to extract invariant features from equivariant
ones via a pooling method such as averaging. In case of SCN [[14], for example, we average the
features over the sphere (see Appendix [C.2)). We then evaluate the kernel mean embedding of the

node features
H(z) - ¢(H(x) =Cr > ¥(hi(x)).
hi(z)eH (x)

Finally, at training time we can use the kernel mean embedding ¢(H (z)) to solve the KRR problem
as

W = argmin { Z((w, P(H(zy))) — Er)* + AH“’”?{K }7 “)

wEH =1

while at inference time we can get an estimation for the potential energy at x by simply evaluating
(0, p(H (x))).

Some practical considerations are now in order. Given a pre-trained GNN representation, one is not
bound to use the node features of the last layer. Intermediate representations have the benefit of being
faster to evaluate, and we empirically observed that the performance of MEKRR is not hindered when
truncating the GNNs pre-trained on OC20 at an intermediate layer (see Appendix [C). Furthermore,
there are many strategies to solve the KRR problem (@) based e.g. on the solution of a linear system
or on gradient-descent. In Algorithm[T]we report the pseudo-code describing our implementation of
the training and prediction steps of MEKRR.

4.3 Chemically-informed kernel mean embeddings

The chemical species of each atom is implicitly encoded in the GNN representation through its
initial layer, embedding each atom of the same chemical species to the same dense feature vector.
In MEKRR we strengthen this dependence by encoding the same information again at the level of
mean embeddings. For a configuration x let now H(z) := {h;(x) | species of i = s} be the subset



Algorithm 1 Mean Embedding Kernel Ridge Regression (MEKRR)

Parameters: Training dataset (24, E;)7_, of configurations x; and potential energies F;. Ker-
nel function k. Interpolation parameter of the multi-weight formulation o € [0, 1]. Tikhonov
regularization A > 0. Pre-trained GNN feature map x — H ().

function TRAIN

(H(z))E, + (2 > Evaluate input representations
Gy < Ko(H (), H(xy)) > Form the kernel matrix using (3)) and/or
c+ (G+A)7E > Compute KRR coefficients where E = (F, ..., Er)
return c

end function

function PREDICT(x)

H(z) + =z > Evaluate GNN representation
v(z) + (Ko(H(x), H(z¢)))E, > Form the kernel matrix
return ¢ v(x) > Return the KRR prediction

end function

of node features corresponding to atoms of the s’th chemical species. We then consider a composite
kernel

S
Ko(H(x),H(z')) == (1 - a)K (H(x),H(z')) + > _ K (H,(z), Hy(z")). (5)

The kernel K, is a direct generalization of the mean embedding kernel (3) where the parameter
« allows to interpolate between emphasizing all atomic interactions equally (o« = 0) and only
within-species atomic interactions (o = 1).

Solving KRR with the composite kernel (3)) is also equivalent to considering an extension of
(@) where to each chemical species is given its own weight while encouraging the weights to be
close to each other and of small magnitude through a regularizer. Precisely, let (w,)5_, be the set
of displacements from a center weight wq for each chemical species. The weight of a chemical
species s is given by w, + wp and the potential energy function for a configuration x takes the

form Zle (ws + wo, d(Hs(z)). In Appendixwe provide a full characterization of this extension,
highlighting its connection to multi-task learning 57, |58]], in which multiple tasks are learned jointly.

5 Experiments

In this section, we consider the realistic problem of modeling the potential energy surface of
catalytic reactions occurring on metallic surfaces. We evaluate our approach against methods
that are representative of the KRR and GNN approaches, testing them on datasets of increasing
complexity taken from realistic applications. As is customary in the literature, we employ the
root mean squared error (RMSE) normalized by the number of atoms as a metric, to facilitate
the comparison between systems of different sizes. We make the code repository available at
https://github.com/IsakFalk/atomistic_transfer_mekrr,

5.1 Baselines and MEKRR

We consider baselines spanning different categories. Firstly we examine supervised learning algo-
rithms trained from scratch on the provided datasets, either through GNNs or kernel methods with
hand-crafted physical features. In this category we have Schnet, SCN and GAP. SchNet [59] is
one of the first GNNs to be applied successfully to chemistry, which uses a radial basis function
representation of the interatomic distances. Spherical Channel Networks (SCN) [14]] is another GNN
and its atom embeddings are a set of spherical functions represented via spherical harmonics. SCN
is one of the state-of-the-art models on the OC20 dataset. For both SchNet and SCN we use the
codebase of [22]]. Finally, Gaussian Approximation Potential (GAP) is a kernel-based method that
builds a Gaussian Process using the Smooth Overlap of Atomic Positions (SOAP) descriptors [60],
which we use through the QUIP/quippy code base [61} 162].


https://github.com/IsakFalk/atomistic_transfer_mekrr

The second category of baselines concerns transfer learning methods based on the OC20 dataset
[22]]. In this case we consider the fine-tuning of Schnet (Schnet-FT) which is done by keeping the
parameters fixed up to the representation used for MEKRR and then optimizing the subsequent layers
on the new dataset.

These baselines are tested against our method (MEKRR), which uses a kernel mean embedding
with Gaussian kernel based on different pre-trained GNN features. The length-scale of the Gaussian
kernel is chosen according to the median heuristic [63]. We will denote MEKRR-(SchNet) and
MEKRR-(SCN) the variants using Schnet and SCN node features as inputs, respectively.

5.2 Datasets

We first describe the dataset which has been used for the construction of the pre-trained GNN feature
map (0C20), and then present the system-specific MD datasets where our method is fine-tuned on
(Cu/formate, Fe/N,).

OC20 The Open Catalyst (OC) 20 is a large dataset of ab initio calculations aimed at estimating
adsorption energies on catalytic surfaces. It comprises ~250 millions of DFT calcula-
tions, generated from over 1.2 million relaxations trajectories of different combinations of
molecules and surfaces. In each relaxation, the positions of the molecule and of the surface
upper layers are optimized via gradient descent in order to compute the adsorption energy.
The adsorbate is selected out of 82 molecules relevant to environmental applications, while,
for each of them, up to 552 surfaces are selected, including binary and ternary compounds.
We underline that, for each adsorbate-surface pair, the configurational space sampled is very
limited, and especially it does not cover out-of-equilibrium and reactive (e.g. bond forming
or breaking) events.

We fine-tune the method and test it on two datasets that are representative of reactive catalytic
events, obtained by means of molecular dynamics simulations coupled with enhanced sampling
methods |64} 165] to avoid mode collapse into the local minima of the potential energy landscape.
Indeed, whereas the OC20 dataset contains short, correlated relaxations toward the nearest equilibrium
state, typical catalytic reaction datasets require sampling all local minima (adsorption states of the
molecule) and especially reactive events, in which, due to interaction with the surface, bonds can
be broken or formed. For this reason, these applications are challenging as they relate to realistic
datasets containing mostly reactive events that are outside the distribution of the OC20 dataset. We
split all the below datasets into a train, validation, and test set using random splitting of 60,/20,/20.

Cu/formate The first dataset is a collection of molecular dynamics simulations of the dehydrogena-
tion reaction of formate on a copper (Cu) <110> surface [[15]], initialized along the reaction
path (obtained with the Nudged Elastic Band method [65]]), in which the molecule loses its
hydrogen atom upon interaction with the surface.

Fe/N; (D;) The second dataset consists of molecular dynamics simulations of a nitrogen molecule
adsorbing on an iron (Fe) <111> surface at high temperature (T = 700 K) and breaking in
two nitrogen atoms [[66]. A peculiarity of this dataset is that it contains data from different
sources (e.g. standard and biased molecular dynamics) and system sizes, allowing us to also
assess the transferability of the methods across different conditions. For this reason, we
divide it into 4 subsets, denoted with D;:

D, : AI-MD Ab initio molecular dynamics simulations. The resulting configurations are highly
correlated and cover a small portion of the configurational space related to the adsorption
process, thus being the closest dataset to the OC20 one.

Dy : AI-METAD Here the ab initio MD simulation is accelerated with the help of the metady-
namics [64] technique. This is an importance sampling method that allows rare events to be
observed, and thus it has been employed for collecting reactive configurations in the training
set [[67]]. Due to the metadynamics approach, a larger region of configurational space is
sampled with respect to D1, allowing one to sample one bond-breaking event.

D3 : AL-METAD Dataset built from an active learning procedure using an ensemble of NNs
combined with metadynamics. In this simulation, multiple reaction events are observed,
covering a wider region of the configurational space and providing a large number of



uncorrelated samples. Hence, these configurations are far from those used to pre-train the
feature map.

D, : AL-METAD-72 Same as D3 but the surface is composed of 72 atoms (8 layers) to test
the transferability across systems of different sizes.

5.3 Interpolating between shared and independent weights

The o parameter in the K, kernel can vary in the range [0, 1], which are the limiting cases between a
shared or independent set of weights for each chemical species. We use cross-validation to set this
parameter in practice. To initially fit the regularization parameter A we set & = 0 and cross-validate
A€ {1073,...,1079} using the same datasets. Despite this simple heuristic cross-validation scheme,
as we will see, the scheme is effective, which we believe is a strength as it shows that the MEKRR
method is simple to tune while still having the strongest performance among the competitors.

In Fig. E] we show the cross-validation curves for MEKRR-(SchNet), related to the two datasets
Cu/formate and Fe/Ns. In the latter case, we perform the cross-validation only on (D-), which is
representative of the family of datasets, and then use the found parameters also for the other datasets.
The two plots show different behavior with the optimal « for the Cu/formate dataset occurring around
10~2. This means that the potential energy can be well described with shared weights across chemical
species together with a small perturbation. Instead, in the Fe/Ns dataset the optimal o occurs at the
boundary leading to a kernel in which the weights for the two species are learned independently.

Cu/formate Fe/Ny (D5)
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Figure 2: Validation error (RMSE / ) of MEKRR-(SchNet) on the Cu/formate and Fe/Ny (Ds)
datasets as a function of o geometrically spaced on a grid from 0 to 1 with optimal « and error given
by a bold orange point. The optimal « for the Cu/formate dataset is positive but close to zero while
the optimal « for the Fe/N; is found at the boundary at 1.0 leading to a hard multi-embedding kernel.
We see that tuning the « allows for improved performance in practice and that the multi-weight
formulation (E]) is practically beneficial.

5.4 Potential energy regression

In this section, we consider the setting of predicting the potential energy surface. We first evaluate
the performance of the models in predicting the energy for each of the datasets and then assess their
generalization performance through the transfer learning setting, where we train and test on similar
but distinct datasets.

Same-dataset energy prediction From Table|l|we see that MEKRR achieves the best performance
in all datasets, both when the input features are extracted from SchNet and SCN. We note that, in
general, the transfer learning algorithms (SchNet-FT and the two MEKRR variants) outperform the
ones trained from scratch, with MEKRR being significantly faster (see Appendix [B). Furthermore,
it is worth highlighting that our method performs better than the baselines even when it is applied
to datasets that are out-of-distribution for the pre-trained feature map. This is particularly evident
for D3 and D4 which contain multiple reactive events (bond-breaking) that were never seen in the
relaxations composing the OC20 dataset. This demonstrates the ability of the GNN trained on large
and heterogeneous datasets to effectively represent chemical environments.



Table 1: Same-dataset energy prediction, metric being RMSE. The errors are in units of meV/atom.
Best performance given by bold number in gray cell.

Fe/N 2

Group Algorithm Cu/formate
Dy Dy D3 Dy

Supervised GAP 04 21 39 49 2.8
SchNet 05 41 51 6.2 6.0
SCN 03 51 75 73 2.5

Fine-tune SchNet-FT 01 20 25 32 1.9

Ours MEKRR-(SchNet) 0.1 13 24 33 1.2
MEKRR-(SCN) 02 09 19 27 1.7

Across-dataset energy prediction Here we evaluate the performance of the algorithms and MEKRR
on transferring from different systems in the Fe/Ns family of datasets. To do this we consider the task
of zero-shot transfer learning (see e.g. [18]] and references therein) where we evaluate a model trained
on a source dataset Dgqyrce On a target dataset Dy,rger. While the two datasets Dgource and Diarget
may be sampled from arbitrary systems, we consider here systems that share some characteristics as
we are evaluating the transfer capability of the models [[68,69]]. Due to the ordering of the datasets
Dy, ..., D, in increasing complexity on several axes (size, ab initio vs. active sampling, standard vs.
biased dynamics, etc.) we consider a transfer from simpler to more complicated systems. Successfully
transferring from simpler to more complicated systems has real-world impact as it can alleviate
the high computational cost required for labeling via DFT calculations by reducing the number of
points. From Table E] we see that MEKRR-(SCN) has the lowest error in four out of five tasks, while
MEKRR-(SchNet) has the lowest error in the remaining task. Furthermore, the relative transferability
of MEKRR compared to the other methods even improves as the task becomes harder. To this respect,
it is worth noting that Dy, Do, D3 are qualitatively similar, being all composed of 5 layers of Fe
and differing for the sampling method used. Instead, the atomic environments contained in D, are
different as they refer to a slab with a different number of layers. This explains the different order of
magnitudes in the last two columns. Despite this, MEKRR still performs very well compared to the
baselines.

Table 2: Transfer evaluation of algorithms on source to target: Dggurce — Diarget, metric being
RMSE. The errors are in units of meV/atom. Best performance is given by bold number in gray cell.

GI'Ollp Algorithm Di—-Dy Dy— D3 Dy — D3 Dy— Dy D3— Dy
Supervised GAP 249 59.1 5.8 830 888
SchNet 13.2 15.4 6.2 93 107
SCN 22.1 29.3 9.7 139 131
Fine-tune ~ SchNet-FT 17.6 273 3.7 121 116
Ours MEKRR-(SchNet) 8.0 9.3 2.9 27 55
MEKRR-(SCN) 7.0 6.3 2.0 40 42

5.5 Leveraging MEKRR beyond supervised learning

In the previous sections, we have shown how MEKRR performs very well on both supervised and
transfer learning tasks. The effectiveness comes from the combination of a pre-trained feature map
together with the K, kernel. However, this idea is not restricted to supervised learning. We can
indeed leverage the similarity measure provided by the kernel for tasks beyond potential energy
regression. As a simple example, in Fig. [3] we plot the kernel matrix, when using SchNet as the
feature map, of a part of the trajectory of D, containing an N-N bond breaking event in the cases
o = 0 and a = 1. In both images we can see a clear structure that highlights at least two distinct
states, but with the second heatmap having more signal. We can then use the kernel to perform
spectral clustering with two classes, the result is visualized on the top margin of the heatmap along
with the time evolution of a physical quantity that signals the N-N bond-breaking. This facilitates a
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Figure 3: Heatmaps of the K ,-SchNet kernel applied to a part of the trajectory of D, (where a
reactive event occurs) and time series of the distance between nitrogen atoms over time ¢. The cases
with @ = 0 and o = 1 are reported on the left and right, respectively. Using spectral clustering with
the two kernels as inputs we label each time-index with one of two classes, with the background
color showing the class. Spectral clustering with the multi-weight kernel picks out the reactive event
perfectly.

physical interpretation, as the two classes correspond to configurations containing the reactants (the
N> molecule) and products (two N atoms) of the chemical reaction. Interestingly, the o = 1 case
correlates more closely with the handpicked physical quantity, shown in the top panel. The reason for
this is the fact that learning the weights independently gives more weight to chemical species that are
under-represented, which typically correspond to adsorbed atoms in surfaces. This allows us to give
more weight to the most important actors in catalytic applications.

6 Conclusion and future work

In this work, we introduced an approach to model the potential energy surface of atomistic systems.
Our method employs GNN representations trained on the large OC20 dataset along with kernel
ridge regression, which we tested on two catalytic processes that are outside the distribution of the
pre-training dataset. We devised a kernel function incorporating GNN features, blending kernel
mean embedding with information related to the atom’s chemical species. Our approach outperforms
standalone GNN or kernel methods, demonstrating impressive transferability. This suggests promising
avenues for transfer learning application in computational chemistry. However, we recognize certain
limitations. Firstly, our method is based upon KRR which scales poorly to large scale datasets,
although potential ways around this such as random features [[70] or Nystrém approximations [71]
can overcome this limitation. Secondly, although we tested MEKRR on out-of-distribution datasets
for representations pre-trained on OC20, we still focused our analysis on catalytic systems similar to
those in the dataset. In this regard, it would be interesting to understand the extent to which MEKRR
can predict well the chemical properties of generic systems. In addition, it would be important
to incorporate forces into the loss function in order to use it in molecular dynamics applications.
We believe that addressing these aspects will further improve the impact of this framework in
computational chemistry.
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