Simple Linear

1 2 Regression

Material from Devore’ s book (Ed 8), and Cengagebrain.com
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| The Simple Linear Regression Model

The simplest deterministic mathematical relationship between
two variables x and y is a linear relationship: y = 5 + pX.

The objective of this section is to develop an equivalent linear
probabilistic model.

If the two (random) variables are probabilistically related, then for
a fixed value of x, there is uncertainty in the value of the second
variable.

SO we assume Y = 3y + B:X + &, where € is a random
variable.

2 variables are related linearly “on average” if for fixed x the
actual value of Y differs from its expected value by a random
amount (/.e. there is random error).




| A Linear Probabilistic Model

Definition The Simple Linear Regression Model

There are parameters f3,, 81, and o2, such that for any fixed
value of the independent variable x, the dependent variable
IS a random variable related to x through the model
equation

Y=Ppot fix+e

The quantity € in the model equation is the “error” -- a
random variable, assumed to be symmetrically distributed

with

E(e)=0and V(¢)= 0,2 = 0%

(no assumption made about the distribution of ¢, yet)



| A Linear Probabilistic Model

X. the independent, predictor, or explanatory variable
(usually known). NOT RANDOM.

Y: The dependent or response variable. For fixed x, Y will be
random variable.

e: The random deviation or random error term. For fixed x, ¢
will be random variable.

What exactly does € do?



| A Linear Probabilistic Model

The points (x4, y1), ..., (X,, ¥,) resulting from n independent
observations will then be scattered about the true
regression line:

At

(X1, y1) True regression line
/. f Y = BO T le
L
o




| A Linear Probabilistic Model

How do we know simple linear regression is
appropriate?

- Theoretical considerations
- SCatterp|otS :::.5..:.:55::20

04 06 08 1.0 12 14 16
palwidth



| A Linear Probabilistic Model

If we think of an entire population of (x, y) pairs, then
Uy« 1S the mean of all y values for which x = x*, and

0%y, x. IS @ measure of how much these values of y spread
out about the mean value.

If, for example, x = age of a child and y = vocabulary size,
then uys5 is the average vocabulary size for all 5-year-old
children in the population, and o?y,5 describes the amount
of variability in vocabulary size for this part of the
population.

10



| A Linear Probabilistic Model

Interpreting parameters:

Bo_(the intercept of the true regression line):
The average value of Y when x is zero.

p1_(the slope of the true regression line):

The expected (average) change in Y associated with a 1-
unit increase in the value of x.

11



| A Linear Probabilistic Model

What is o2y,,.? How do we interpret o2y,,?

Homoscedasticity:

We assume the variance (amount of variability) of the distribution of Y
values to be the same at each different value of fixed x. (i.e.
homogeneity of variance assumption).

12



|' When errors are normally distributed...

Normal, mean 0,
i r/_ standard deviation o
i distribution of €
1 |

—o 0 o

(b) distribution of Y for different values of x

Bo t B1x3

Bo t B1Xy
Bo + Bix

The variance parameter o2 determines the extent to which each

normal curve spreads out about the regression line 13



| A Linear Probabilistic Model

When o2 is small, an observed point (x, y) will almost
always fall quite close to the true regression line, whereas
observations may deviate considerably from their expected
values (corresponding to points far from the line) when o?
Is large.

Thus, this variance can be used to tell us how good the
linear fit is

But how do we define “good™?

14



| Estimating Model Parameters

The values of 3, B4, and o2 will almost never be known to
an investigator.

Instead, sample data consists of n observed pairs

(X1s y1)’ "t (Xm yn)’

from which the model parameters and the true regression
line itself can be estimated.

The data (pairs) are assumed to have been obtained
independently of one another.

15



| Estimating Model Parameters

Where
Yi=pot Bix;+ g fori=1,2 ...,n

and the n deviations ¢4, ¢,,..., &, are independent r.v.’s.

(Yy, Yo, ..., Y, are independent too, why?)

16



| Estimating Model Parameters

The “best fit” line is motivated by the principle of least
squares, which can be traced back to the German

mathematician Gauss (1777-1855):

-\ .

A line provides the best 1

from the observed points

to that line is as small ) —

fit to the data if the sum _g i y = by + byx
of the squared vertical 2 60 -
distances (deviations) -::f

o 401

o

.EE.

as it can be.

I I I T = %
10 20 30 40

Applied stress (kg/mm?) 17



| Estimating Model Parameters

The sum of squared vertical deviations from the points
(x1, V1),..., (x5, ¥,,) 1O the line is then

n

f(b()’ b]) = E[yi - (b() + blx,')]2

i=1

The point estimates of 8, and ;, denoted by 3, and g, , are
called the least squares estimates — they are those
values that minimize f(by, b).

18



| Estimating Model Parameters

The fitted regression line or least squares line is then
the line whose equation is y = 5o + B x.

The minimizing values of b, and b, are found by taking
partial derivatives of f(b,, b,) with respect to both b, and b,
equating them both to zero [analogously to f'(b) = 0 in
univariate calculus], and solving the equations

('-) ,
T 5) _ 520y, = By — byx) (=1) = 0
ob,
of (b, b
f(az ) = 2200 — by = byxp) (—x) =0
|

19



| Estimating Model Parameters

The least squares estimate of the slope coefficient 3, of the
true regression line is
E(X,' o })()’,- B ,V) _ S\'\‘

h = 3. = 1 —
= B XX, — X S,

§hortcut formulas for the numerator and denominator of
B, are

Sy, = Xy — (2x)(Zy)/in  and S, = Zx7? — (2x;)%n

(Typically columns for x;, y; x;y;and x;? and constructed and then
S,y and S, are calculated.)

20



| Estimating Model Parameters

The least squares estimate of the intercept 3, of the true
regression line is

A z,\’,’ B :é Exi
by = By = 5 l

:}_’_le

The computational formulas for S,, and S,, require only the
summary statistics Xx;, Zy;, =x? and Zx;y;

(Zy? will be needed shortly for the variance.)

21



Il Exa m p I e(fitted regression line)

The cetane number is a critical property in specifying the
ignition quality of a fuel used in a diesel engine.

Determination of this number for a biodiesel fuel is
expensive and time-consuming.

The article “Relating the Cetane Number of Biodiesel
Fuels to Their Fatty Acid Composition: A Critical Study”
(J. of Automobile Engr., 2009: 565-583) included the
following data on x = iodine value (g) and y = cetane
number for a sample of 14 biofuels (see next slide).

22



IL Exa m p I e(fitted regression line)

The iodine value (x) is the amount of iodine necessary to
saturate a sample of 100 g of oil. The article’ s authors fit the
simple linear regression model to this data, so let’ s do the same.

cont’ d

x |132.0 129.0 120.0 113.2 105.0 92.0 84.0 83.2 88.4 59.0 80.0 81.5 71.0 69.2
y 146.0 48.0 51.0 52.1 54.0 52.0 59.0 58.7 61.6 64.0 614 54.6 58.8 58.0

Calculating the relevant statistics gives
EX,' - 13075, Zy, - 7792,
>x7=128,913.93, 2x;y;=171,347.30,

from which S,, = 128,913.93 — (1307.5)2/14 = 6802.7693
and S,, = 71,347.30 — (1307.5)(779.2)/14 = —1424.41429

23



I Exa m p | e(fitted regression line)

cont’ d

Scatter plot with the least squares line superimposed.

cet num =75.21 -0.2094 iod val
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cet num
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50 60 70 80 90 100 110 120 130 140
iod val 24




| Fitted Values

Fitted Values:
The fitted (or predicted) values y,. ) - . .. v, are obtained
by substituting x;,..., X, into the equation of the estimated
regression line:

Vi =Byt BiXxp, Y, = By + Bixo et Y, = By t Bix,

Residuals:

The differences vy, — v, v, = ¥o. . . ., y, — v, between the
observed and fitted y values.

Residuals are estimates of the true error —- WHY?

25



| Sum of the residuals

When the estimated regression line is obtained via the
principle of least squares, the sum of the residuals should
in theory be zero, if the error distribution is symmetric,
since

> (yi — (Bo + Bras)) = nY — nfo — PinT = nfy — nfy =0

.\V

A

80 —
y=by+ bx

60

40 —

20

Time to failure (hr)

Applied stress (kg/mm?)
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Il Exa m p I e(fitted values)

Suppose we have the following data on filtration rate (x)
versus moisture content (y):

X 125.3 98.2 2014 147.3 1459 1247 1122 1202 1612 1789
y 11.9 76.8 81.5 79.8 78.2 78.3 71.5 77.0  80.1 80.2
X 159.5 1458 75.1 1514 1442 1250 198.8 1325 159.6 110.7
y 199 19.0 76.7 78.2 195 78.1 81.5 770  79.0 78.6

Relevant summary quantities (summary statistics) are
2x; = 2817.9, 2y, = 1574.8, >x?; = 415,949.85,
2X; y; = 222,657.88, and >y? = 124,039.58,

From S,, = 18,921.8295, S,, = 776.434.

Calculation of residuals?
27



I Exa m p | e(fitted values)

cont’ d

All predicted values (fits) and residuals appear in the

accompanying table.

Obs Filtrate Moistcon Fit Residual
1 125.3 77.9 78.100 —0.200
2 98.2 76.8 76.988 —0.188
3 201.4 81.5 81.223 0.277
4 147.3 79.8 79.003 0.797
2 145.9 78.2 78.945 —0.745
6 124.7 78.3 78.075 0.225
7 112.2 77.5 77.563 —0.063
8 120.2 77.0 77.891 —0.891
9 161.2 80.1 79.573 0.527

10 178.9 80.2 80.299 —0.099

11 159.5 79.9 79.503 0.397

12 145.8 79.0 78.941 0.059

13 7.1 76.7 76.040 0.660

14 151.4 78.2 79.171 —0.971

15 144.2 79.5 78.876 0.624

16 125.0 78.1 78.088 0.012

17 198.8 81.5 81.116 0.384

18 132.5 77.0 78.396 —1.396

19 159.6 79.0 79.508 —0.508

20 110.7 78.6 77.501 1.099

28




| Fitted Values

We interpret the fitted value as the value of y that we would
predict or expect when using the estimated regression line with
X = x;; thus Vi is the estimated true mean for that population
when x = x; (based on the data).

The residual y; — Y; is a positive number if the point lies above
the line and a negative number if it lies below the line(z:, J:)

The residual can be thought of as a measure of deviation and
we can summarize the notation in the following way:

A

Y, =Y, =¢

29



| Estimating 0% and o

The parameter o2 determines the amount of spread about
the true regression line. Two separate examples:

y = Product sales
y = Elongation

A

x = Tensile force x = Advertising expenditure

30



| Estimating 0% and o

An estimate of o2 will be used in confidence interval (Cl)

formulas and hypothesis-testing procedures presented in
the next two sections.

Many large deviations (residuals) suggest a large value of
0, whereas deviations all of which are small in magnitude
suggest that o2 is small.

31



| Estimating 02 and o

The error sum of squares (equivalently, residual sum of
squares), denoted by SSE, is

SSE = >y, — y)2 = Xy, — (B, + Byx)T?

and the estimate of o2 is

4.2 n
62:S2ZSSE:Z(?J i) 1 >

n— 2 n — 2 n—2i:1

(Note that that the homoscedasticity assumption comes
into play here.)



| Estimating 0% and o

The divisor n— 2 in s?is the number of degrees of freedom
(df) associated with SSE and the estimate s.

This is because to obtain s?, the two parameters ;and g,
must first be estimated, which results in a loss of 2 df (just as
u had to be estimated in one sample problems, resulting in an
estimated variance based on n— 1 df in our previous t-tests).

Replacing each y; in the formula for s? by the r.v. Y, gives the
estimator S2.

It can be shown that the r.v. S?is an unbiased estimator for o2

33



Il Exa m p I e(variance estimator)

The residuals for the filtration rate—moisture content data
were calculated previously.

The corresponding error sum of squares is
SSE = (-.200)? + (—.188)% + --- + (1.099)? = 7.968

The estimate of o2 is then o* = 82 = 7.968/(20 — 2) = .4427,
and the estimated standard deviation is

o =8=V.4427 = 665

Roughly speaking, .665 is the magnitude of a typical
deviation from the estimated regression line—some points
are closer to the line than this and others are further away.

34



| Estimating 0% and o

Computation of SSE from the defining formula involves

much tedious arithmetic, because both the predicted values
and residuals must first be calculated.

Use of the following shortcut formula does not require
these quantities.

SSE = Xy; — B()E)’f - Blzxiyi
This expression results from substituting Y = By + Bix; into

>(y; — ¥)* squaring the summand, carrying through the
sum to the resulting three terms, and simplifying.

35



| The Coefficient of Determination

Different variability in observed y values:

\J

(a) (b) (c)

Using the linear model to explain y variation:
(a) data for which all variation is explained;
(b) data for which most variation is explained,;
(c) data for which little variation is explained

36



| The Coefficient of Determination

(a) The points in the first plot all fall exactly on a straight line. In
this case, all (100%) of the sample variation in y can be
attributed to the fact that x and y are linearly related in
combination with variation in x.

(b) The points in the second plot do not fall exactly on a line, but

compared to overall y variability, the deviations from the least
squares line are small.

It is reasonable to conclude in this case that much of the
observed y variation can be attributed to the approximate linear
relationship between the variables postulated by the simple
linear regression model.

(c) When the scatter plot looks like that in the third plot, there is
substantial variation about the least squares line relative to
overall y variation, so the simple linear regression model fails to

explain variation in y by relating y to x. 37



| The Coefficient of Determination

The error sum of squares SSE can be interpreted as a
measure of how much variation in y is left unexplained by
the model—that is, how much cannot be attributed to a
linear relationship.

In the first plot SSE = 0, and there is no unexplained
variation, whereas unexplained variation is small for
second, and large for the third plot.

A quantitative measure of the total amount of variation in
observed y values is given by the total sum of squares

SST = 8, = 3(y, = Y7 = Sy} = (Sy/n
38



| The Coefficient of Determination

Total sum of squares is the sum of squared deviations
about the sample mean of the observed y values — when
no predictors are taken into account.

Thus the same number y is subtracted from each y;in SST,
whereas SSE involves subtracting each different predicted
value Vi from the corresponding observed y..

The SST in some sense is as bad as SSE can get if there
IS No regression model (i.e., slope is 0) then

Bo=T—PT = §J=PHo+ B T=0=7
N
0

Which motivates the definition of the SST.

39



| The Coefficient of Determination

Just as SSE is the sum of sguared deviations about the

least squares line y = B, + Bx, SST is the sum of squared

deviations about the horizontal line at height 7 as pictured
below:

7

A

Least squares line

Y
;“l

(@)

<

Horizontal line at height y

T?g TT ? l
:

Sums of squares illustrated: (a) SSE = sum of squared deviations about the least squares line;
(b) SSE =sum of squared deviations about the horizontal line

40



| The Coefficient of Determination

The sum of squared deviations about the least squares line
Is smaller than the sum of squared deviations about any

other line, i.e. SSE < SST unless the horizontal line itself is
the least squares line.

The ratio SSE/SST is the proportion of total variation that
cannot be explained by the simple linear regression model,
and r° =1 — SSE/SST (a number between 0 and 1) is the
proportion of observed y variation explained by the model.

Note that if SSE = 0 as in case (a), then r’=1.

41



| The Coefficient of Determination

Definition
The coefficient of determination, denoted by r?, is given
by
o_, SSE _ . SSE
SST Sy

It is interpreted as the proportion of observed y variation
that can be explained by the simple linear regression model
(attributed to an approximate linear relationship between y

and x).

The higher the value of r?, the more successful is the
simple linear regression model in explaining y variation.

42



| Example

The scatter plot of the iodine value—cetane number data in
the previous example implies a reasonably high r? value.

cet num =75.21 —0.2094 iod val

65

60

55 -

cet num

50 1

45

I 1 1 I 1 I 1 1 1 1
50 60 70 80 90 100 110 120 130 140
iod val

Scatter plot for Example 4 with least squares line superimposed, from Minitab

43



| Example

cont’ d

The coefficient of determination for the previous example is
then

r2 =1 — SSE/SST = 1 — (78.920)/(377.174) = .791

That is, 79.1% of the observed variation in cetane number
Is attributable to (can be explained by) the simple linear
regression relationship between cetane number and
lodine value.

44



| The Coefficient of Determination

The coefficient of determination can be written in a slightly
different way by introducing a third sum of
squares—regression sum of squares, SSR—given by

SSR = 3(5, - 7)2= SST — SSE.

Regression sum of squares is interpreted as the amount of
total variation that /s explained by the model.

Then we have
r’=1 — SSE/SST = (SST — SSE)/SST = SSR/SST

the ratio of explained variation to total variation.

45



I Inferences About the Slope Parameter g,

In virtually all of our inferential work thus far, the notion of
sampling variability has been pervasive.

Properties of sampling distributions of various statistics
have been the basis for developing confidence interval
formulas and hypothesis-testing methods.

Same idea as before: The value of any quantity calculated
from sample data (which is random) will vary from one
sample to another.

46



| Inferences About the Slope Parameter g,

The estimators are:

S X)), YY) s 2 -0
IBI B E()Cl. — })2 =7 Bl Sxx

2.¢Y.

That is, 3, is a linear function of the independent rv’ s
Y, Yo, ..., Y, each of which is normally distributed.

Similarly, we have the estimators:

. Y. — B. Sy
}8(): > ; nﬁlle

And, ) )
ZYiz — ,BQEY,‘ R BlzxiYi
n—>2

o’ = §? =

47



I Inferences About the Slope Parameter g,

Invoking properties of a linear function of random variables

as discussed earlier, leads to the following results.

1. The mean value of  is E(B1) = 3, so Biis an
unbiased estimator of S, (the distributic8: of _Is always

centered at the value of S, which is unknowP.

2. The variance and standard deviation of 5, are
o’ T

., 0 o
Vig) = o, = S T T NS

XX XX

where S,, = Z(x;— x)? and ois the (unknown) true st. dev.

48



I Inferences About the Slope Parameter g,

Replacing oby its estimate s gives an estimate for o
(the estimated standard deviation, i.e., estimated
standard error, of 8,):

B \/S

XX

This estimate can also be denoted by o7,.
(Recall s? = SSE/n-2)

3. The estimator 3, has a normal distribution (because it is
a linear function of independent normal r.v.” s).

49



I Inferences About the Slope Parameter g,

NOTE:

- Xx; values that are quite spread out = estimator with a low
standard error.

- x; all close to one another = highly variable estimator.

If the x;’ s are spread out too far, a linear model may not be
appropriate throughout the range of observation.

50



I Inferences About the Slope Parameter g,

Theorem

The assumptions of the simple linear regression model
Imply that the standardized variable

~

T = BA]_BI _ B, — B,
SIVS.. S,

B

has a t distribution with n — 2 df (since o = s).

51



| A Confidence Interval for g,

As in the derivation of previous Cls, we begin with a
probability statement:

:él — B
P<_ta/2.112 < S . < Z‘a/2.1'1—2 =1 -«
B

Manipulation of the inequalities inside the parentheses to
Isolate ; and substitution of estimates in place of the

estimators gives the Cl formula.

A 100(1 — )% CI for the slope g, of the true regression
line is
Bl = ta/Q,n—Q ) Sél

52



' Example

Variations in clay brick masonry weight have implications not
only for structural and acoustical design but also for design of
heating, ventilating, and air conditioning systems.

The article “Clay Brick Masonry Weight Variation™ (J. of
Architectural Engr., 1996:. 135-137) gave a scatter plot of

y = mortar dry density (Ib/ft?) versus x = mortar air content (%)
for a sample of mortar specimens, from which the following
representative data was read.:

X 5.7 6.8 9.6 10.0 10.7 12.6 14.4 15.0 15.3
y 119.0 121.3 118.2 124.0 112.3 114.1 112.2 115.1 111.3

X 16.2 17.8 18.7 19.7 20.6 25.0
y 107.2  108.9 107.8 111.0 106.2 105.0

53



| Example

cont’ d

The scatter plot of this data in Figure 12.14 certainly

suggests the appropriateness of the simple linear regression
model; there appears to be a substantial negative linear
relationship between air content and density, one in which
density tends to decrease as air content increases.

Density

125 5
115+

105

r T T > Air content
5 15 25
Scatter plot of the data from Example 11

Figure 12.14 54



| Example

cont’ d

The values of the summary statistics required for calculation
of the least squares estimates are

ZX,' = 218.1 Zy, = 1693.6 ZXIYI = 24,25254 2){:12 = 3577.01
2y:=191,672.90; n =15

What is r° and how is it interpreted?

What is the 95% confidence interval for the slope?

95



| Hypothesis-Testing Procedures

The most commonly encountered pair of hypotheses about
p1is Hy: B4 =0 versus H,. 5, # 0. When this null hypothesis
s true, uy., = B, (independent of x). Then knowledge of x
gives no information about the value of the dependent
variable.

Null hypothesis: Hy: 81 = Bio

Test statistic value: t = P — B (“t ratio”)
SA
B,

56



| Hypothesis-Testing Procedures

Alternative Hypothesis Alternative Hypothesis

Hy: By > Bio tz1,,_2
Hy: 1 < Bio t<—tyn_»
Ha: /31 ;é ﬁ’IO either tZ ta/2,n—2 or tS — ta/2,n—2

A P-value based on n — 2 can be calculated just as was
done previously for t tests.

If Hy: By = 0, then the test statistic is the t ratio t=BAl/S[§1.

57



| Regressionin R.

58



I Inference Concerning Mean of Future Y

Let x* denote a specified value of the independent
variable x.

Once the estimates B,and B, have been calculated,

Bo+ B, x* can be regarded either as a point estimate of Ky.,«
(the expected or true average value of Y when x = x*) or as
a prediction of the Y value that will result from a single
observation made when x = x*.

59



I Inference Concerning Mean of Future Y

The estimate of uy..» is random, so we can develop a Cl
for My and a prediction interval (Pl) for a single Y value.
What is the difference?

Before we obtain sample data, both 8,and 3, are subject to
sampling variability—they are both statistics whose values
will vary from sample to sample.

Suppose, for example, that the true B, = 439 and B, = 0.05.
Then a first sample of (x, y) pairs might give8, = 439.35,
B, = 0.048; a second sample might result in 3, = 438.52,

B, = 0.051; and so on.
60



I Inference Concerning Mean of Future Y

It follows that ¥ = 8,+ B,x* itself varies in value from sample
to sample — it is a random variable.

If the intercept and slope of the population line are the
values 439 and 0.05, respectively, and suppose x* = 5kgs,
then this statistic is trying to estimate the true value which

IS.

439 + 0.05(5) = 439.25 = My

Then the estimate from a first sample might be
439.35 + 0.048(5) = 439.59,

from a second sample it might be

438.52 + 0.051(5) = 438.775 , and so on. 5



I Inference Concerning Mean of Future Y

IpferAences about the mean Y-value
B, + B, x* will be based on properties of the sampling
distribution of the statistic Y = 5y + S12™.

Substitution of the expressions for 3,and g, into g,+ 3, x*
followed by some algebraic manipulation leads to the
representation of B, +8, x* as a linear function of the Y; s:

A A 511 (x* — X)(x;, — X) c
+ Bt =D | — + L Y = 2dY
Bo ¥ B i=1 L7 >(x; — X)? i=1
The coefficients d,, d,, ...., d, in this linear function involve

the x;' s and x*, all of which are fixed.

62



I Inference Concerning Mean of Future Y

Application of the rules to this linear function gives the
following properties.

Proposition

Let YV = 3, + 512" Where x* is some fixed value of x. Then

1. The expectation of v is

E(Y) = E(BO T BIX*) = Mg ape — By T BX*

Thus Y = 3, + B,2* is an unbiased estimator for By + B1x*
(i.e., forwy..+).

63



I Inference Concerning Mean of Future Y

2. The variance of ¢ is

S 2, l (x*_})z B i (x*_})z
VIY) =05 =0 - - Sx? = (Exi)z/n] —azln + < }

XX

And the standard deviation o is the square root gf this
expression. The estimated standard deviation of B,+ 3, x*,

denoted by syor Sg . 5 .+, results from replacing o by
its estimate s (recall s? = SSE/n-2):

S l_l_()c*—})2
SY - SBU"'B]X* -9 n S

XX

3. i’ has a normal distribution.

64



I Inference Concerning Mean of Future Y

The variance of 3,+ 3, x* is smallest when x* = x and
Increases as x* moves away from x in either direction.

Thus the estimator of uy.,. is more precise when x* is near
the center of the x;” s than when it is far from the values at
which observations have been made. This will imply that
both the Cl and Pl are narrower for an x* near x than for an
x* far from Xx.
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I Distribution of Future Y

Just as inferential procedures for B, were based on the t
variable obtained by standardizing §,, a { variable obtained

by standardizing By+ B, x* leads to a Cl and test procedures
here.

Theorem
The variable

T _ o+ b —(Bo+pra’) Y-EY) Y-Y

Sbotbra Sy Sy
has a t distribution with n — 2 df.
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I Confidence Interval for Future Y

A probability statement involving this standardized variable
can now be manipulated to yield a confidence interval for
N’Y*x*

A 100(1 — o )% CI for the expected value of Y when
X =Xx* 1S

I h.:}:—|— e O~ A :A—q— . O~
Bo t BX™* £ tupnaSipor =V T lapna Sy

This Cl is centered at the point estimate for #y..« and
extends out to each side by an amount that depends on the
confidence level and on the extent of variability in the
estimator on which the point estimate is based.
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I EXample: Cli for Y|X=x based on regression

Corrosion of steel reinforcing bars is the most important
durability problem for reinforced concrete structures.

Carbonation of concrete results from a chemical reaction
that also lowers the pH value by enough to initiate
corrosion of the rebar.

Representative data on
x = carbonation depth (mm)

and y = strength (MPa) for a sample of core
specimens taken from a particular building

follows on the next slide
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I EXample: ClI for Y|X=x based on regression

cont’ d
% 8.0 15.0 16.5 20.0 20.0 215 30.0 30.0 35.0
y 22.8 212 23] 7] 2L1.5 18.6 16.1 23.4 13.4
X 38.0 40.0 45.0 50.0 50.0 55.0 9.0 59.0 65.0
y 19.5 12.4 13.2 11.4 10.3 14.1 9.7 12.0 6.8
Y =27.1829 - 0.297561X
R-Sq=76.6 %
30
20
£
(o))
S
7]
10
Regression
------- 95% ClI
—-—  95%PI
0- T | T 1 T T T
0 10 20 30 40 50 60 70
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I Example: Cl for Y|X=x based on regression

cont’ d

Let’ s now calculate a 95% confidence interval for the mean
strength for all core specimens having a carbonation depth
of 45.
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| A Prediction Interval for a Future Value of Y

Rather than calculate an interval estimate for w«y.,«, an
investigator may wish to obtain a range or an interval of
possible values of Y associated with some future
observation when the independent variable has value x*.

Consider, for example, relating vocabulary size y to age of
a child x. The Cl with x* = 6 would provide a range that
covers with 95% confidence the true average vocabulary
size for all 6-year-old children.

Alternatively, we might wish an interval of plausible values
for the vocabulary size of a particular 6-year-old child. How

can you tell that a child is “off the chart” for example?
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| A Prediction Interval for a Future Value of Y

A confidence interval refers to a parameter, or population
characteristic, whose value is fixed but unknown to us.

In contrast, a future value of Yis not a parameter but
instead a random variable; for this reason we refer to an
interval of plausible values for a future Y as a prediction
interval rather than a confidence interval.

Determining a prediction interval for Y requires that we
model the error involved in the prediction of the Y variable.
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| A Prediction Interval for a Future Value of Y

The error of predictionisY — Y =Y — (8y + f1z*), i.e. a
difference between two random variables. Because the

future value Y is independent of the observed Y; s, we
have

variance of prediction error = VY — (Bo + Bw*)]
=V (V)= V(B + biz*)
1 (z*— 5)2]

2 2 | -
=0~ 4+ 0 [n—|— S

1 (z* —7)?
2
— 14+ =
o [ +n+ S ]
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I A Prediction Interval for a Future Value of Y

Furthermore, because E(Y) = B, + B1x* and expectation of
Byt B, x =By + B1x*, the expected value of the prediction
erroris E(Y— (B,+ B, x*)) = 0.

It can then be shown that the standardized variable

- Y= (fo+hz*) _(¥Y-Y)-0_ (Y-Y)-E{Yy-Y)
\/ 1 (2" —7) Sy v Sy_v
S\[1+ —+

n

has a t distribution with n — 2 df.
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| A Prediction Interval for a Future Value of Y

Manipulating to isolate Y between the two inequalities
yields the following interval.

A 100(1 — a)% PI for a future Y observation to be made
when x = x* Is
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| A Prediction Interval for a Future Value of Y

The interpretation of the prediction level 100(1 — a)% is
similar to that of previous confidence levels—if is used
repeatedly, in the long run the resulting interval will actually
contain the observed y values 100(1 — a)% of the time.

Notice that the 1 underneath the initial square root symbol

makes the Pl wider than the CI, though the intervals are
both centered at g, + 3,x*.

Also, as n — oo, the width of the Cl approaches 0, whereas
the width of the Pl does not (because even with perfect
knowledge of 5, and (4, there will still be randomness in
prediction).
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I Example: Pl for Y|X=x based on regression

Return to the carbonation depth-strength data example and
calculate a 95% Pl for a strength value that would result
from selecting a single core specimen

whose depth is 45 mm.
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| Residuals and Standardized Residuals

The standardized residuals are given by

yi_j}i
e’ 1= 1,..., n
s/l — I bi—xy
n SXX

If, for example, a particular standardized residual is 1.5,
then the residual itself is 1.5 (estimated) standard
deviations larger than what would be expected from
fitting the correct model.
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| Diagnostic Plots

The basic plots that many statisticians recommend for an
assessment of model validity and usefulness are the
following:

1. e (or e;) on the vertical axis versus x; on the horizontal
) ) )
axis

2. e/ (or g)) on the vertical axis versus y; on the horizontal
axis

3. ; on the vertical axis versus y; on the horizontal axis

4. A histogram of the standardized residuals
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| Diagnostic Plots

Plots 1 and 2 are called residual plots (against the independent
variable and fitted values, respectively), whereas Plot 3 is fitted
against observed values.

Provided that the model is correct, neither residual plots should exhibit
distinct patterns.

The residuals should be randomly distributed about 0 accordingto a
normal distribution, so all but a very few standardized residuals
should lie between -2 and +2 (i.e., all but a few residuals within 2
standard deviations of their expected value 0).

If Plot 3 yields points close to the 45-deg line [slope +1 through (0, 0)],
then the estimated regression function gives accurate predictions of
the values actually observed.
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I Example (Plot Type #2 and #3)

y
4 ex
204
580 ‘ . .
. 104 , o
o [ ]
| [ ]
* D 0.0 v
¢ o°® ° Standardized
240 —1.0 4 ¢ ,  residuals
° . VS. X
| . yVS.y hp i
[ ]
100 4/°° —
I | | | I ) | I | | I i
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| Heteroscedasticity

The residual plot below suggests that, although a straight-
line relationship may be reasonable, the assumption that
V(Y;) = o2 for each i is of doubtful validity.

+2 o

Using advanced methods like weighted LS (WLS), or more

advanced models, is recommended for inference.
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