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PREFACE 

This book has developed from junior-senior level advanced calculus courses 
that I have taught during the past several years. It was motivated by a desire 
to provide a modern conceptual treatment of multivariable calculus, emphasiz-
ing the interplay of geometry and analysis via linear algebra and the approxi-
mation of nonlinear mappings by linear ones, while at the same time giving 
equal attention to the classical applications and computational methods that are 
responsible for much of the interest and importance of this subject. 

In addition to a satisfactory treatment of the theory of functions of several 
variables, the reader will (hopefully) find evidence of a healthy devotion to 
matters of exposition as such—for example, the extensive inclusion of motiva-
tional and illustrative material and applications that is intended to make the 
subject attractive and accessible to a wide range of" typical " science and mathe-
matics students. The many hundreds of carefully chosen examples, problems, 
and figures are one result of this expository effort. 

This book is intended for students who have completed a standard introduc-
tory calculus sequence. A slightly faster pace is possible if the students' first course 
included some elementary multivariable calculus (partial derivatives and multiple 
integrals). However this is not essential, since the treatment here of multi-
variable calculus is fully self-contained. We do not review single-variable 
calculus, with the exception of Taylor's formula in Section II.6 (Section 6 of 
Chapter II) and the fundamental theorem of calculus in Section IV. 1. 

Chapter I deals mainly with the linear algebra and geometry of Euclidean 
«-space 0tn. With students who have taken a typical first course in elementary 
linear algebra, the first six sections of Chapter I can be omitted; the last two 
sections of Chapter I deal with limits and continuity for mappings of Euclidean 
spaces, and with the elementary topology of 0tn that is needed in calculus. 
The only linear algebra that is actually needed to start Chapter II is a know-
ledge of the correspondence between linear mappings and matrices. With 
students having this minimal knowledge of linear algebra, Chapter 1 might 
(depending upon the taste of the instructor) best be used as a source for reference 
as needed. 

ix 



X Preface 

Chapters II through V are the heart of the book. Chapters II and III treat 
multivariable differential calculus, while Chapters IV and V treat multivariable 
integral calculus. 

In Chapter II the basic ingredients of single-variable differential calculus are 
generalized to higher dimensions. We place a slightly greater emphasis than 
usual on maximum-minimum problems and Lagrange multipliers—experience 
has shown that this is pedagogically sound from the standpoint of student moti-
vation. In Chapter III we treat the fundamental existence theorems of multi-
variable calculus by the method of successive approximations. This approach is 
equally adaptable to theoretical applications and numerical computations. 

Chapter IV centers around Sections 4 and 5 which deal with iterated integrals 
and change of variables, respectively. Section IV.6 is a discussion of improper 
multiple integrals. Chapter V builds upon the preceding chapters to give a 
comprehensive treatment, from the viewpoint of differential forms, of the clas-
sical material associated with line and surface integrals, Stokes' theorem, and 
vector analysis. Here, as throughout the book, we are not concerned solely 
with the development of the theory, but with the development of conceptual 
understanding and computational facility as well. 

Chapter VI presents a modern treatment of some venerable problems of the 
calculus of variations. The first part of the Chapter generalizes (to normed vector 
spaces) the differential calculus of Chapter II. The remainder of the Chapter 
treats variational problems by the basic method of " ordinary calculus "—equate 
the first derivative to zero, and then solve for the unknown (now a function). The 
method of Lagrange multipliers is generalized so as to deal in this context with 
the classical isoperimetric problems. 

There is a sense in which the exercise sections may constitute the most im-
portant part of this book. Although the mathematician may, in a rapid reading, 
concentrate mainly on the sequence of definitions, theorems and proofs, this 
is not the way that a textbook is read by students (nor is it the way a course 
should be taught). The student's actual course of study may be more nearly 
defined by the problems than by the textual material. Consequently, those ideas 
and concepts that are not dealt with by the problems may well remain un-
learned by the students. For this reason, a substantial portion of my effort has 
gone into the approximately 430 problems in the book. These are mainly 
concrete computational problems, although not all routine ones, and many deal 
with physical applications. A proper emphasis on these problems, and on the 
illustrative examples and applications in the text, will give a course taught 
from this book the appropriate intuitive and conceptual flavor. 

I wish to thank the successive classes of students who have responded so 
enthusiastically to the class notes that have evolved into this book, and who 
have contributed to it more than they are aware. In addition, I appreciate the 
excellent typing of Janis Burke, Frances Chung, and Theodora Schultz. 
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I 
Euclidean Space and Linear Mappings 

Introductory calculus deals mainly with real-valued functions of a single 
variable, that is, with functions from the real line 01 to itself. Multivariable 
calculus deals in general, and in a somewhat similar way, with mappings from 
one Euclidean space to another. However a number of new and interesting 
phenomena appear, resulting from the rich geometric structure of «-dimensional 
Euclidean space 0tn. 

In this chapter we discuss 0ln in some detail, as preparation for the develop-
ment in subsequent chapters of the calculus of functions of an arbitrary number 
of variables. This generality will provide more clear-cut formulations of theo-
retical results, and is also of practical importance for applications. For example, 
an economist may wish to study a problem in which the variables are the 
prices, production costs, and demands for a large number of different com-
modities; a physicist may study a problem in which the variables are the coor-
dinates of a large number of different particles. Thus a " real-life " problem may 
lead to a high-dimensional mathematical model. Fortunately, modern tech-
niques of automatic computation render feasible the numerical solution of 
many high-dimensional problems, whose manual solution would require an 
inordinate amount of tedious computation. 

1 THE VECTOR SPACED" 

As a set, 0tn is simply the collection of all ordered «-tuples of real numbers. 
That is, 

0tn = {(*i> x2 5 · · · > *#,): each xt e 01). 

1 
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Recalling that the Cartesian product A x B of the sets A and B is by definition 
the set of all pairs (#, b) such that a e A and b e B, we see that 0tn can be re-
garded as the Cartesian product set $ x · · · x @t (n times), and this is of course 
the reason for the symbol 0t. 

The geometric representation of ^?3, obtained by identifying the triple 
(xl9 χ2, x3) of numbers with that point in space whose coordinates with respect 
to three fixed, mutually perpendicular ςςcoordinate axes" are xl, x2, x3 respec-
tively, is familiar to the reader (although we frequently write (x, y, z) instead of 
(xl9 x2, X3) in three dimensions). By analogy one can imagine a similar geo-
metric representation of 0t in terms of n mutually perpendicular coordinate 
axes in higher dimensions (however there is a valid question as to what "per-
pendicular" means in this general context; we will deal with this in Section 3). 

The elements of rMn are frequently referred to as vectors. Thus a vector is 
simply an A7-tuple of real numbers, and not a directed line segment, or equivalence 
class of them (as sometimes defined in introductory texts). 

The set 0tn is endowed with two algebraic operations, called vector addition 
and scalar multiplication (numbers are sometimes called scalars for emphasis). 
Given two vectors x = (xu . . . , xn) and y = (>'1? . . . , yn) in ffln, their sum x + y 
is defined by 

x + y = (*! + > Ί , . . . , x„ + >'„), 

that is, by coordinatewise addition. Given a e i , the scalar multiple ax is de-
fined by 

ax — (ax^ . . . , axn). 

For example, if x = ( 1, 0, — 2, 3) and y = ( — 2, 1,4, —5) then x + y = ( — 1, 1, 
2, - 2 ) a n d 2 x = (2,0, - 4 , 6 ) . Finally we write 0 = ( 0 , . . . . , 0) and - x = ( - l ) x , 
and use x — y as an abbreviation for x + ( —y). 

The familiar associative, commutative, and distributive laws for the real 
numbers imply the following basic properties of vector addition and scalar 
multiplication: 

V1 x + (y + z) = (x + y) + z 
V2 x + y = y + x 
V3 x + 0 = x 
V4 x + ( - x ) = 0 
V5 (ab)x = a(bx) 
V6 (a + b)x = ax + bx 
V7 a(x + y) = ax + ay 
V8 lx = x 

(Here x, y, z are arbitrary vectors in {Mn, and a and b are real numbers.) VI-V8 
are all immediate consequences of our definitions and the properties of M. For 
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example, to prove V6, let x = (xu . . . , xn). Then 

{a + b)\ = ({a + b)xu . . . , (a + *)*„) 

= (ufX! + bxu ...9axn + bxn) 

= (axu ...,ax„) + (bxu ...,bxn) 

= ax + 6x. 

The remaining verifications are left as exercises for the student. 
A vector space is a set V together with two mappings Vx V-+ V and 

0t x F-> F, called vector addition and scalar multiplication respectively, such 
that V1-V8 above hold for all x, y, z e V and a, b e & (V3 asserts that there 
exists 0 e F such that x + 0 = x for all x e V, and V4 that, given X G F , there 
exists — x e V such that x + ( — x) = 0). Thus VI-V8 may be summarized by 
saying that 0ln is a vector space. For the most part, all vector spaces that we 
consider will be either Euclidean spaces, or subspaces of Euclidean spaces. 

By a subspace of the vector space V is meant a subset W of V that is itself a 
vector space (with the same operations). It is clear that the subset W of V is a 
subspace if and only if it is "closed" under the operations of vector addition 
and scalar multiplication (that is, the sum of any two vectors in IF is again in W, 
as is any scalar multiple of an element of W)—properties VI-V8 are then in-
herited by JFfrom F Equivalently, J^is a subspace of F if and only if any linear 
combination of two vectors in [Fis also in iF(why?). Recall that a linear com-
bination of the vectors vl5 . . . , \k is a vector of the form al\l -f · · · + ak\k9 

where the at e 0t. The span of the vectors v,, . . . , \k e &n is the set S of all linear 
combinations of them, and it is said that S is generated by the vectors V j , . . . , νΛ. 

Example 1 (%n is a subspace of itself, and is generated by the standard basis 
vectors 

e, = ( l , 0 ,0 , . . . , 0 ) , 

e 2 = ( 0 , 1,0, . . . , 0 ) , 

e„ = ( 0 , 0 , 0 , . . . , 0,1), 

since (xl9 x2, . . . , xn) = xx£2 + x\^i + " * + xnen- Als o t n e subset of 0tn con-
sisting of the zero vector alone is a subspace, called the trivial subspace of 0tn. 

Example 2 The set of all points in @n with last coordinate zero, that is, the 
set of all (* , , . . . , xn-u 0) e ^?", is a subspace of 0tn which may be identified with 
0tn~\ 

Example 3 Given (au a2, . . . , a„) e @n, the set of all (x1, x2, . . . , xn) e 0tn 

such that a{x{ + · · · + anxn = 0 is a subspace of J>" (see Exercise 1.1). 



4 I Euclidean Space and Linear Mappings 

Example 4 The span S of the vectors vl5 . . . , \k e 0tn is a subspace of 0t 
because, given elements a = £* ciiyi and b = £* 6,-v,· of 5, and real numbers r 
and 5*, we have ra + sb = £*(ra,· + s/^V; e S. 

Lines through the origin in 0l·3 are (essentially by definition) those subspaces 
of ffl3 that are generated by a single nonzero vector, while planes through the 
origin in &3 are those subspaces of $3 that are generated by a pair of non-
collinear vectors. We will see in the next section that every subspace V of 0tn 

is generated by some finite number, at most n, of vectors; the dimension of the 
subspace V will be defined to be the minimal number of vectors required to 
generate V. Subspaces of 0ln of all dimensions between 0 and n will then general-
ize lines and planes through the origin in ^ 3 . 

Example 5 If V and W are subspaces of Mn, then so is their intersection 
V r\ ^ ( t h e set of all vectors that lie in both Fand W). See Exercise 1.2. 

Although most of our attention will be confined to subspaces of Euclidean 
spaces, it is instructive to consider some vector spaces that are not subspaces of 
Euclidean spaces. 

Example 6 Let SF denote the set of all real-valued functions on 01. If / + g 
and af are defined by ( / + g){x) =f{x) + g(x) and {af)(x) = af(x), then !F is a 
vector space (why?), with the zero vector being the function which is zero for all 
x e M. If # is the set of all continuous functions and 0 is the set of all poly-
nomials, then 0 is a subspace of #, and <β in turn is a subspace of $F. If 0>n is the 
set of all polynomials of degree at most n, then 0n is a subspace of 0 which is 
generated by the polynomials 1, x, x1, . . . , xn. 

Exercises 

1.1 Verify Example 3. 
1.2 Prove that the intersection of two subspaces of @tn is also a subspace. 
1.3 Given subspaces V and W of ^ n , denote by V + W the set of all vectors v+ w with 

v e V and w e IV. Show that V + W is a subspace of 0tn. 
1.4 If V is the set of all (x, y, z) e 3?3 such that x + 2y = 0 and x + y = 3z, show that K is 

a subspace of M3. 
1.5 Let ώ*ο denote the set of all differentiable real-valued functions on [0, 1] such that 

f(Q) = / ( ! ) = o. Show that Q)Q is a vector space, with addition and multiplication defined 
as in Example 6. Would this be true if the condition / (0) = f{\) = 0 were replaced by 
/ (0) = 0 , / ( l ) = 1? 

1.6 Given a set S, denote by > (5, ^ ) the set of all real-valued functions on 5, that is, all maps 
S-> R. Show that ^(S, ^) is a vector space with the operations defined in Example 6. 
Note that ^"({1, . . . , « } , ^ ) c a n be interpreted as &tn since the function 99 e «^"({1, . . . , » } , ^ ) 
may be regarded as the «-tuple (φ(1), <p(2), . . . , ψ(η)). 
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2 SUBSPACES OF @n 

In this section we will define the dimension of a vector space, and then show 
that 0tn has precisely n — 1 types of proper subspaces (that is, subspaces other 
than 0 and $n itself)—namely, one of each dimension 1 through n — 1. 

In order to define dimension, we need the concept of linear independence. The 
vectors vl5 v2 , . . . , vA are said to be linearly independent provided that no one of 
them is a linear combination of the others; otherwise they are linearly dependent. 
The following proposition asserts that the vectors \l9 . . . , \k are linearly inde-
pendent if and only if JC1V1 + x2 v2 + · · · + xk vfc = 0 implies that xx = x2 = 
- · · = xk = 0. For example, the fact that x1el + x2 e2 + ' ' ' + xnen — (*i> xi > 
. . . , xn) then implies immediately that the standard basis vectors el5 e2, . . . , e„ 
in 0tn are linearly independent. 

Proposition 2.1 The vectors vl5 v2, . . . , yk are linearly dependent if 
and only if there exist numbers xi9 x2, . . . , xk, not all zero, such that 
x1\1 + x 2 v 2 + · · · -{-xkyk = Q. 

PROOF If there exist such numbers, suppose, for example, that x1 Φ 0. Then 

x2 xk 
▼i = v2 - · · · v , , 

χ χ xl 

so vl5 v2, . . . , \k are linearly dependent. If, conversely, vt = a2 \2 + · · · -f ak \k, 
then we have x1\l + x2 v2 + · · · + xk \k = 0 with xl = — 1 Φ 0 and xv = at· for 

Example 7 To show that the vectors x = (1, 1, 0), y = (1, 1, 1), z = (0, 1, 1) 
are linearly independent, suppose that ax + by + cz = 0. By taking components 
of this vector equation we obtain the three scalar equations 

a + b = 0 , 
a + b + c = 0, 

b + c = 0. 

Subtracting the first from the second, we obtain c = 0. The last equation then 
gives b = 0, and finally the first one gives a = 0. 

Example 2 The vectors x = (1, 1, 0), y = (1, 2, 1), z = (0, 1, 1) are linearly 
dependent, because x — y + z = 0. 

It is easily verified (Exercise 2.7) that any two collinear vectors, and any three 
coplanar vectors, are linearly dependent. This motivates the following definition 
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of the dimension of a vector space. The vector space V has dimension n, dim V 
= n, provided that V contains a set of n linearly independent vectors, while 
any n + 1 vectors in Kare linearly dependent; if there is no integer n for which 
this is true, then V is said to be infinite-dimensional. Thus the dimension of a 
finite-dimensional vector space is the largest number of linearly independent 
vectors which it contains; an infinite-dimensional vector space is one that con-
tains n linearly independent vectors for every positive integer n. 

Example 3 Consider the vector space $F of all real-valued functions on 01. 
The functions 1, x, x2, . . . , x" are linearly independent because a polynomial 
α0 + αγχ + · · · + anx

n can vanish identically only if all of its coefficients are 
zero. Therefore 3F is infinite-dimensional. 

One certainly expects the above definition of dimension to imply that Eucli-
dean «-space 0tn does indeed have dimension n. We see immediately that its 
dimension is at least n, since it contains the n linearly independent vectors 
el5 . . . , e„. To show that the dimension of 0ln is precisely n, we must prove that 
any n 4- 1 vectors in 0tn are linearly dependent. 

Suppose that vl5 . . . , \k are k > n vectors in 0tn, and write 

yj = (alj,a2j, ..., anJ), j = 1, . . . , fc. 

We want to find real numbers xl9 . . . , xk, not all zero, such that 

0 = χιΎί +x2\2 + · · · + xk\k 

k 

= Σχλαυ>α2]> '",onj). 

This will be the case if £*= l a^Xj = 0, / = 1, . . . , n. Thus we need to find a 
nontrivial solution of the homogeneous linear equations 

alxx2 +a12x2 + · · · +aikxk = 0, 
0 2 i * i + t f 2 2 * 2 + · " +<*2kxk = 09 . j . 

««1*1 + an2*2 + · ' · + dnkXk = 0. 

By a nontrivial solution (xl5 x2, . . . , xk) of the system (1) is meant one for which 
not all of the xt are zero. But k > n, and (1) is a system of n homogeneous linear 
equations in the k unknowns xu . . . , xk. (Homogeneous meaning that the right-
hand side constants are all zero.) 

It is a basic fact of linear algebra that any system of homogeneous linear 
equations, with more unknowns than equations, has a nontrivial solution. The 
proof of this fact is an application of the elementary algebraic technique of 
elimination of variables. Before stating and proving the general theorem, we 
consider a special case. 
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Example 4 Consider the following three equations in four unknowns: 

xx + 2x2 — x3 + 2x4 = 0, 
xi — x2 + 2x3 -f x4 = 0, (2) 

2x! + x2
 — *3 - XA = 0. 

We can eliminate xl from the last two equations of (2) by subtracting the first 
equation from the second one, and twice the first equation from the third one. 
This gives two equations in three unknowns: 

-3x2 + 3 x 3 - x 4 = 0, 
— 3x2 + x3 — 5x4 = 0. 

Subtraction of the first equation of (3) from the second one gives the single 
equation 

- 2 J C 3 - 4 X 4 = 0 (4) 

in two unknowns. We can now choose x4 arbitrarily. For instance, if x4 = 1, 
then x3 = —2. The first equation of (3) then gives x2 = — y, and finally the 
first equation of (2) gives jq = — -2T2-. So we have found the nontrivial solution 
( -V- , - f - 2 , 1) of the system (2). 

The procedure illustrated in this example can be applied to the general case 
of n equations in the unknowns xu...,xk,k >n. First we order the n equations 
so that the first equation contains xl9 and then eliminate xx from the remaining 
equations by subtracting the appropriate multiple of the first equation from each 
of them. This gives a system of n — 1 homogeneous linear equations in the k — 1 
variables x2 , . . . , xk. Similarly we eliminate x2 from the last n — 2 of these n — 1 
equations by subtracting multiples of the first one, obtaining n — 2 equations 
in the k — 2 variables x 3 , x 4 , . . . , xk. After n — 2 steps of this sort, we end up 
with a single homogeneous linear equation in the k — n + 1 unknowns xn, 
xn + 1, . . . , xk. We can then choose arbitrary nontrivial values for the "extra" 
variables xn + i9 xn + 2> · · · > xk (such as xn + 1 = 1, xn+2 = · · · = xk = 0), solve the 
final equation for xn, and finally proceed backward to solve successively for 
each of the eliminated variables xn-u xn-2, . . . , xv The reader may (if he likes) 
formalize this procedure to give a proof, by induction on the number n of equa-
tions, of the following result. 

Theorem 2.2 If k > n, then any system of n homogeneous linear equa-
tions in k unknowns has a nontrivial solution. 

By the discussion preceding Eqs. (1) we now have the desired result that 
dim @n = n. 

Corollary 2.3 Any n + 1 vectors in 0tn are linearly dependent. 

(3) 
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We have seen that the linearly independent vectors el5 e 2 , . . . , e„ generate 0tn. 
A set of linearly independent vectors that generates the vector space Kis called a 
basis for V. Since x = (xu x2, . . . , xn) = x^ + x2e2 + * * * + xnen, it is clear 
that the basis vectors el5 . . . , e„ generate V uniquely, that is, if x = ylei + y2 e2 
+ ■ " + yn

 e« a'so> trien Xi = yi for each /. Thus each vector in 0tn can be expressed 
in one and only one way as a linear combination of el9 . . . , e„. Any set of n 
linearly independent vectors in an /7-dimensional vector space has this property. 

Theorem 2.4 If the vectors v1? . . . , v„ in the ^-dimensional vector space 
Fare linearly independent, then they constitute a basis for V, and further-
more generate V uniquely. 

PROOF Given v e V, the vectors v, vl5 . . . , v„ are linearly dependent, so by 
Proposition 2.1 there exist numbers x, xl5 . . . , χη, not all zero, such that 

x\ + x^ j + · · · + xn\n = 0. 

If x = 0, then the fact that vls . . . , v„ are linearly independent implies that 
Xi = - · - = xn = 0. Therefore x φ 0, so we solve for v: 

v = Vi v2 + · · · v„. 
X X X 

Thus the vectors vl5 . . . , \n generate V, and therefore constitute a basis for V. 
To show that they generate V uniquely, suppose that 

a1\1 + · · · + anyn = al'\1 + · · · + an\. 

Then 

(ßi - ai>i + "' + (<*n- <*n'K = ° 

So, since vx, . . . , v„ are linearly independent, it follows that a{: — a/ = 0, or 
at = a/, for each /. | 

There remains the possibility that 0ln has a basis which contains fewer than 
n elements. But the following theorem shows that this cannot happen. 

Theorem 2.5 If dim V = n, then each basis for V consists of exactly n 
vectors. 

PROOF Let w1? w2, . . . , w„ be n linearly independent vectors in V. If there were 
a basis v1? v 2 , . . . , \m for Kwith m < n, then there would exist numbers {a^} such 
that 

Wi =an\l + -" + amlym, 

w„ = ûrlnv1 + · · · +amny, 
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Since m < n, Theorem 2.2 supplies numbers xl, . . . , xn not all zero, such that 

awx\ + " ' + a\nxn = 0, 

But this implies that 
n 

x{yvl + · · · + xn w„ = X xjfajvx + · · · + amjym) 

m 

= Σ(αηχι + ' " + */«*»>« 
i = 1 

= 0, 

which contradicts the fact that w l 5 . . . , w„ are linearly independent. Consequently 
no basis for Vcan have m <n elements. | 

We can now completely describe the general situation as regards subspaces 
of 0tn. If F is a subspace of ffln, then k = dim V ^ n by Corollary 2.3, and if 
k = n, then V = &n by Theorem 2.4. If /c > 0, then any /c linearly independent 
vectors in V generate V, and no basis for V contains fewer than k vectors 
(Theorem 2.5). 

Exercises 

2.1 Why is it true that the vectors Vi, . . . , \k are linearly dependent if any one of them is zero ? 
If any subset of them is linearly dependent? 

2.2 Which of the following sets of vectors are bases for the appropriate space 0tnl 
(a) (1,0) and (1,1). 
(b) (1,0, 0), (1, 1,0), and(0 , 0, 1). 
(c) (1, 1,1), (1, 1,0), and (1 ,0 ,0) . 
(d) (1, 1, 1, 0), (1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 1, 0). 
(e) (1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), and (1, 0, 0, 0). 

2.3 Find the dimension of the subspace V of ^ 4 that is generated by the vectors (0, 1,0, 1), 
(1 ,0 , 1,0), and (1, 1, 1, 1). 

2.4 Show that the vectors (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1) form a basis for the subspace V 
of ^ 4 which is defined by the equation χγ + x2 + x3 — x4 = 0. 

2.5 Show that any set v t , . . . , vfc, of linearly independent vectors in a vector space V can be 
extended to a basis for V. That is, if k<n = dim K, then there exist vectors \k + l, . . . , v„ 
in F such that v l f . . . v„ is a basis for V. 

2.6 Show that Theorem 2.5 is equivalent to the following theorem : Suppose that the equations 

tfii*i + ··· 4- alnxn = 0, 

tfni*i -I- ··· + annxn = 0 
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have only the trivial solution xx = --- = xn = 0. Then, for each b = {bu . . . , b,X the 
equations 

tfn*i + ··· + alnxn = bu 

aniXi + ··· + ann xn = bn 

have a unique solution. Hint: Consider the vectors a7 = (tfu, a2j, . . . , anj),j = 1, . . . , n. 
2.7 Verify that any two collinear vectors, and any three coplanar vectors, are linearly depen-

dent. 

3 INNER PRODUCTS AND ORTHOGONALITY 

In order to obtain the full geometric structure of 0tn (including the concepts 
of distance, angles, and orthogonality), we must supply 0tn with an inner 
product. An inner (scalar)product on the vector space Fis a function F x F-> 0i, 
which associates with each pair (x, y) of vectors in F a real number <x, y>, and 
satisfies the following three conditions: 

SP1 <x, x> > 0 if x Φ 0 (positivity). 
SP2 <x, y> = <y, x> (symmetry). 
SP3 {ax + by, z> + a{x, z> 4- b(y9 z>. 

The third of these conditions is linearity in the first variable; symmetry then gives 
linearity in the second variable also. Thus an inner product on F is simply a 
positive, symmetric, bilinear function on F x V. Note that SP3 implies that 
<0, 0> = 0 (see Exercise 3.1). 

The usual inner product on 0tn is denoted by x · y and is defined by 

x - y = *iJ;i + · · · + xnyn, ( 0 
where x = (xl9 . . . , x„), y = (>Ί, . . . , yn). It should be clear that this definition 
satisfies conditions SPl, SP2, SP3 above. There are many inner products on 
0in (see Example 2 below), but we shall use only the usual one. 

Example 1 Denote by %>[a, b] the vector space of all continuous functions on 
the interval [a, b], and define 

<f,g>= ff(t)g(t)dt 

for any pair of functions / , g e #[#, b]. It is obvious that this definition satisfies 
conditions SP2 and SP3. It also satisfies SPl, because if f(t0) φ 0, then by 
continuity (f(t))2 > 0 for all t in some neighborhood of t0, so 

</,/> = f/(02 dt > 0. 
J a 

Therefore we have an inner product on (6\a, b], 
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Example 2 Let a, b, c be real numbers with a > 0, ac — b2 > 0, so that the 
quadratic form q(x) = ax2 + 2bxlx2 + cx2

2 is positive-definite (see Section 
II.4). Then <x, y> = axly1 + bxly2 + bx2yi + cx2y2 defines an inner product 
on &2 (why?). With a = c=\,b = 0we obtain the usual inner product on 0l2. 

An inner product on the vector space V yields a notion of the length or 
" size " of a vector xe V, called its norm | x | . In general, a norm on the vector 
space F is a real-valued function x-> [x| on V satisfying the following con-
ditions: 

N1 | x | > 0 i f x ^ 0 (positivity), 
N2 |flx| = |a | |x | (homogeneity), 
N3 |x + y | ^ | x | + | y | (triangle inequality), 

for all x, y e Vand ö e i Note that N2 implies that [0[ = 0. 

The norm associated with the inner product < , > on V is defined by 

|x|=V<ï^> (2) 
It is clear that SP1-SP3 and this definition imply conditions Nl and N2, but 
the triangle inequality is not so obvious; it will be verified below. 

The most commonly used norm on 0tn is the Euclidean norm 

[x | =(x1
2 + --+xn

2)1'2, 

which comes in the above way from the usual inner product on 0tn. Other 
norms on 0tn, not necessarily associated with inner products, are occasionally 
employed, but henceforth [ x | will denote the Euclidean norm unless otherwise 
specified. 

Example 3 ||x|| =max{ |x 1 | , . . . , |x„|}5 the maximum of the absolute values 
of the coordinates of x, defines a norm on 0ln (see Exercise 3.2). 

Example 4 |x | x = \xl \ + \x2\ + · ·· + \xn\ defines still another norm on 
0tn (again see Exercise 3.2). 

A norm on V provides a definition of the distance d(x, y) between any two 
points x and y of V: 

</(x,y) = | x - y | . 

Note that a distance function d defined in this way satisfies the following three 
conditions: 

D1 d(x, y) > 0 unless x = y (positivity), 
D2 d(x, y) = d(y, x) (symmetry), 
D3 d(x, z) ^ d(x, y) + d(y, z) (triangle inequality), 


