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Preface

This Manual contains the solutions to selected exercises in the book Real

Analysis and Foundations by Steven G. Krantz, hereinafter referred to as
“the text.”

The problems solved here have been chosen with the intent of covering the
most significant ones, the ones that might require techniques not explicitly
presented in the text, or the ones that are not easily found elsewhere.

The solutions are usually presented in detail, following the pattern in
the text. Where appropriate, only a sketch of a solution may be presented.
Our goal is to illustrate the underlying ideas in order to help the student to
develop his or her own mathematical intuition.

Notation and references as well as the results used to solve the problems
are taken directly from the text.

Steven G. Krantz
St. Louis, Missouri





Chapter 1

Number Systems

1.1 The Real Numbers

1. The set (0, 1] contains its least upper bound 1 but not its greatest lower
bound 0. The set [0, 1) contains its greatest lower bound 0 but not its
least upper bound 1.

3. We know that α ≥ a for every element a ∈ A. Thus −α ≤ −a for
every element a ∈ A hence −α ≤ b for every b ∈ B. If b′ > −α is a
lower bound for B then −b′ < α is an upper bound for A, and that is
impossible. Hence −α is the greatest lower bound for B.

Likewise, suppose that β is a greatest lower bound for A. Define
B = {−a : a ∈ A}. We know that β ≤ a for every element a ∈ A.
Thus −β ≥ −a for every element a ∈ A hence −β ≥ b for every b ∈ B.
If b′ < −β is an upper bound for B then −b′ > β is a lower bound for
A, and that is impossible. Hence −β is the least upper bound for B.

5. We shall treat the least upper bound. Let α be the least upper bound
for the set S. Suppose that α′ is another least upper bound. It α′ > α
then α′ cannot be the least upper bound. If α′ < α then α cannot be
the least upper bound. So α′ must equal α.

7. Let x and y be real numbers. We know that

(x+ y)2 = x2 + 2xy + y2 ≤ |x|2 + 2|x||y| + |y|2 .
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Taking square roots of both sides yields

|x+ y| ≤ |x| + |y| .

9. We treat commutativity. According to the definition in the text, we
add two cuts C and D by

C + D = {c+ d : c ∈ C, d ∈ D} .

But this equals

{d+ c : c ∈ C, d ∈ D}

and that equals D + C.

11. Consider the set of all numbers of the form

j

k
√

2

for j, k relatively prime natural numbers and j < k. Then certainly
each of these numbers lies between 0 and 1 and each is irrational.
Furthermore, there are countably many of them.

* 13. Notice that if n−kλ = m− `λ then (n−m) = (k− `)λ. It would follow
that λ is rational unless n = m and k = `. So the numbers n− kλ are
all distinct.

Now let ε > 0 and choose an positive integer N so large that
λ/N < ε. Consider ϕ(1), ϕ(2), . . . , ϕ(N). These numbers are all
distinct, and lie in the interval [0, λ]. So two of them are distance not
more than λ/N < ε apart. Thus |(n1 − k1λ) − (n2 − k2λ)| < ε or
|(n1 − n2) − (k1 − k2)λ| < ε. Let us abbreviate this as |m− pλ| < ε.

It follows then that the numbers

(m− pλ), (2m − 2pλ), (3m − 3pλ), . . .

are less than ε apart and fill up the interval [0, λ]. That is the definition
of density.
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1.2 The Complex Numbers

1. We calculate that

z · z

|z|2 =
z · z
|z|2 =

|z|2
|z|2 = 1 .

So z/|z|2 is the multiplicative inverse of z.

3. Write

1 + i =
√

2eiπ/4 .

We seek a complex number z = reiθ such that

z3 = r3e3iθ = (reiθ)3 =
√

2eiπ/4 .

It follows that r = 21/6 and θ = π/12. So we have found the cube root

c1 = 21/6eiπ/12 .

Now we may repeat this process with
√

2eiπ/4 replaced by
√

2ei9π/4.
We find the second cube root

c2 = 21/6ei9π/12 .

Repeating the process a third time with
√

2eiπ/4 replaced by
√

2ei17π/4,
we find the third cube root

c3 = 21/6ei17π/12 .

5. We see that

φ(x+ x′) = (x+ x′) + i0 = (x+ i0) + (x′ + i0) = φ(x) + φ(x′) .

Also

φ(x · x′) = (x · x′) + i0 = (x+ i0) · (x′ + i0) = φ(x) · φ(x′) .
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7. Let
p(z) = a0 + a1z + a2z

2 + · · · + akz
k

be a polynomial with real coefficients aj. If α is a root of this polynomial
then

p(α) = a0 + a1α+ a2α
2 + · · · + akα

k = 0 .

Conjugating this equation gives

p(α) = a0 + a1α+ a2α
2 + · · · + akα

k = 0 .

Hence α is a root of the polynomial p. We see then that roots of p
occur in conjugate pairs.

9. The function ϕ(x) = x+ i0 from R to C is one-to-one. Therefore

card(R) ≤ card(C) .

Since the reals are uncountable, we may conclude that the complex
numbers are uncountable.

11. The defining condition measures the sum of the distance of z to 1 + i0
plus the distance of z to −1 + i0. If z is not on the x-axis then |z −
1| + |z + 1| > 2 (by the triangle inequality). If z is on the x axis but
less than −1 or greater than 1 then |z− 1|+ |z+ 1| > 2. So the only z
that satisfy |z − 1| + |z + 1| > 2 are those elements of the x-axis that
are between −1 and 1 inclusive.

15. The set of all complex numbers with rational real part contains the set
of all complex numbers of the form 0 + yi, where y is any real number.
This latter set is plainly uncountable, so the set of complex number
with rational real part is also uncountable.

17. The set S = {z ∈ C : |z| = 1} can be identified with T = {eiθ : 0 ≤
θ < 2π}. The set T can be identified with the interval [0, 2π), and that
interval is certainly an uncountable set. Hence S is uncountable.

19. Let p be a polynomial of degree k ≥ 1 and let α1 be a root of p. So
p(α) = 0. Now let us think about dividing p(z) by (z − α1). By the
Euclidean algorithm,

p(z) = (z − α1) · q1(z) + r1(z) . (∗)
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Here q1 is the “quotient” and r1 is the “remainder.” The quotient
will have degree k − 1 and the remainder will have degree less than
the degree of z − α1. In other words, the remainder will have degree
0—which means that it is constant. Plug the value z = α1 into the
equation (∗). We obtain

0 = 0 + r1 .

Hence the remainder, the constant r1, is 0.

If k = 1 then the process stops here. If k > 1 then q1 has degree
k − 1 ≥ 1 and we may apply the Fundamental Theorem of Algebra to
q1 to find a root α2. Repeating the argument above, we divide (z−α2)
into q1 using the Euclidean algorithm. We find that it divides in evenly,
producing a new quotient q2.

This process can be repeated k− 2 more times to produce a total of
k roots of the polynomial p.





Chapter 2

Sequences

2.1 Convergence of Sequences

1. The answer is no. We can even construct a sequence with arbitrarily
long repetitive strings that has subsequences converging to any real
number α. Indeed, order Q into a sequence {qn}. Consider the follow-
ing sequence

{q1, q2, q2, q1, q1, q1, q2, q2, q2, q2, q3, q3, q3, q3, q3, q1, q1, q1, q1, q1, q1, · · · } .

In this way we have repeated each rational number infinitely many
times, and with arbitrarily long strings. From the above sequence we
can find subsequences that converge to any real number.

5. We know that ∫ 1

0

dt

1 + t2
= Tan−1(t)

∣∣∣∣
1

0

=
π

4
.

As we know from calculus (and shall learn in greater detail in Chapter
7 of the present text), the integral on the left can be approximated by
its Riemann sums. So we obtain

k∑

j=0

f(sj)∆xj ≈
π

4
.

Here f(t) = 1/(1 + t2). Since the sum on the left can be written out
explicitly, this gives a means of calculating π to any desired degree of
accuracy.

7
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7. Let ε > 0. Choose an integer J so large that j > J implies that
|aj −α| < ε. Also choose an integer K so large that j > K implies that
|cj − α| < ε. Let M = max{J,K}. Then, for j > M , we see that

α − ε < aj ≤ bj ≤ cj < α + ε .

In other words,
|bj − α| < ε .

But this says that limj→∞ bj = α.

9. The sequence

aj = π +
1

j
, j = 1, 2, . . .

is decreasing and certainly converges to π.

11. If the assertion were not true then the sequence {aj} does not converge.
So, for any ε > 0 there exist arbitarily large j so that |aj − α| > ε.
Thus we may choose j1 < j2 < · · · so that |ajk

− α| > ε. This says
that the subsequence {ajk

} does not converge to α. Nor does it have a
subsequence that converges to α. That is a contradiction.

2.2 Subsequences

1. Let a1 ≥ a2 ≥ · · · be a decreasing sequence that is bounded below by
some number M . Of course the sequence is bounded above by a1. So
the sequence is bounded. By the Bolzano-Weierstrass theorem, there
is a subsequence {ajk

} that converges to a limit α.

Let ε > 0. Choose K > 0 so that, when k ≥ K, |ajk
−α| < ε. Then,

when j > jK ,
α− ε < aj ≤ ajK

< α+ ε .

Thus
|aj − α| < α .

So the sequence converges to α.

3. Suppose that {a} has a subsequence diverging to +∞. If in fact {aj}
converges to some finite real number α, then every subsequence con-
verges to α. But that is a contradiction.
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y = 1/x

Figure 2.1: Sum of shaded regions is 1 + 1/2 + · · · 1/j − log j.

5. Consider Figure 2.1.

The sum of the areas of the four shaded regions is

1 +
1

2
+

1

3
+

1

4
− log j ,

where of course we use the natural logarithm. All four of these shaded
regions may be slid to the left so that they lie in the first, large box.
And they do not overlap. This assertion is true not just for the first
four summands but for any number of summands. So we see that the
value of

lim
j→∞

(
1 +

1

2
+

1

3
+ · · · + 1

j

)
− log j

is not greater that 1 × 1 = 1. In particular, the sequence is increasing
and bounded above. So it converges.

7. Similar to the solution of Exercise 13 in Section 1.1 above.

9. Define the sequence aj by

0, 0, 1, 0, 1, 1/2, 0, 1, 1/2, 1/3, 0, 1, 1/2, 1/3, 1/4, . . . .

Then, given an element 1/j in S, we may simply choose the subsequence

1/j, 1/j, 1/j, . . .

from the sequence aj to converge to 1/j. And it is clear that the
subsequences of aj have no other limits.
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2.3 Lim sup and Lim inf

1. Consider the sequence

1,−1, 1,−1, 5,−5, 1,−1, 1,−1, . . . .

Then, considered as a sequence, the limsup is plainly 1. But the supre-
mum of the set of numbers listed above is 5. Also the liminf is −1. But
the infimum of the set of numbers listed above is −5.

What is true is that
lim sup aj ≤ sup{aj}

and
lim inf aj ≥ inf{aj} .

We shall not prove these two inequalities here.

3. Let α = lim sup aj. Then there is a subsequence {ajk
} that converges

to α. But then {−ajk
} converges to −α. If there is some other sub-

sequence {−aj`
} that converges to some number β < −α then {aj`

}
would converge to −β > α. And that is impossible. Hence −α is the
liminf of {−aj}.
A similar argument applies to γ = lim inf aj and the consideration of
{−aj}.

5. Consider the sequence

a, b, a, b, a, b, a, b, . . . .

Then clearly the limsup of this sequence is equal to b and the liminf of
this sequence is equal to a.

9. The limsup is defined to be the limit of the sequence bj = sup{aj, aj+1, aj+2, . . .}.
Clearly bj ≥ aj. Therefore

lim
j→∞

bj = lim
k→∞

bjk
≥ lim

k→∞
ajk

.

So
lim
k→∞

ajk
≤ lim sup aj .

A similar argument shows that

lim
k→∞

ajk
≥ lim inf aj .
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11. Let {aj`
} be any subsequence of the given sequence. Define bj`

=
sup{aj`

, aj`+1
, . . .}. Then

bj`
≥ aj`

so
lim sup

`→∞
bj`

≥ lim sup `→ ∞aj`

so that
lim sup aj`

≥ lim sup aj`
.

A similar argument applies to the liminf.

* 13. The numbers {sin j} are dense in the interval [−1, 1] (see Exercise 7 of
Section 2.2). Thus, given ε > 0, there is an integer j so that | sin j−1| <
ε. But then

| sin j|sin j > (1 − ε)1−ε .

It follows that
lim sup | sin j|sin j = 1 .

A similar argument shows that

lim inf | sin j|sin j = (1/e)1/e .

2.4 Some Special Sequences

1. Let r = p/q = m/n be two representations of the rational number r.
Recall that for any real α, the number αr is defined as the real number
β for which

αm = βn.

Let β ′ satisfy
αp = β ′q.

We want to show that β = β ′. we have

βn·q = αm·q

= αp·n

= β ′q·n.
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By the uniqueness of the (n · q)th root of a real number it follows that

β = β ′,

proving the desired equality. The second equality follows in the same
way. Let

α = γn.

Then
αm = γn·m.

Therefore, if we take the nth root on both sides of the above inequality,
we obtain

γm = (αm)1/n.

Recall that γ is the nth root of α. Then we find that

(α1/n)m = (αm)1/n.

Using similar arguments, one can show that for all real numbers α and
β and q ∈ Q

(α · β)q = αq · βq.

Finally, let α, β, and γ be positive real numbers. Then

(α · β)γ = sup{(α · β)q : q ∈ Q, q ≤ γ}
= sup{αqβq : q ∈ Q, q ≤ γ}
= sup{αq : q ∈ Q, q ≤ γ} · sup{βq : q ∈ Q, q ≤ γ}
= αγ · βγ.

3. We write

jj

(2j)!
=

1

1 · 2 · · · (j − 1) · (j) ·
j · j · · · · · j

(j + 1) · (j + 2) · · · · · 2j .

Now the second fraction is clearly bounded by 1, while the first fraction
is bounded by 1/((j − 1)j). Altogether then,

0 ≤ jj

(2j)!
≤ 1

j2 − j
.

The righthand side clearly tends to 0. So

lim
j→∞

jj

(2j)!
= 0 .
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7. Use a generating function as in the solution of Exercise 6 above.

* 9. Notice that (
1 +

1

j2

)
≤ exp(1/j2)

(just examine the power series expansion for the exponential function).
Thus

aj =

(
1 +

1

12

)
·
(

1 +
1

22

)
·
(

1 +
1

13

)
· · · · ·

(
1 +

1

j2

)

≤ exp(1/12) · exp(1/22) · exp(1/32) · · · · · exp(1/j2)

= exp(1/12 + 1/22 + 1/32 + · · · + 1/j2) .

Of course the series in the exponent on the right converges. So we may
conclude that the infinite product converges.



14 CHAPTER 2. SEQUENCES



Chapter 3

Series of Numbers

3.1 Convergence of Series

1. (a) Converges by the Ratio Test.

(b) Diverges by comparison with
∑

j 1/j.

(c) Converges by the Ratio Test.

(d) Converges by the Alternating Series Test.

(e) Diverges by comparison with
∑

j 1/j.

(f) Converges by comparison with
∑

j 1/j2.

(g) Converges by the Root Test.

(h) Converges by the Cauchy Condensation Test.

(i) Diverges by comparison with
∑

j 1/j.

(j) Converges by the Cauchy Condensation Test.

3. Since
∑

j bj converges, then bj → 0. Thus, for j sufficiently large,
0 < bj < 1/2. But then

1

1 + bj
≥ 2

3
.

So the series diverges by the Comparison Test.

5. FALSE. Let aj = (j + 1)2. Then aj > 1 for all j = 1, 2, . . . . And∑
j 1/aj converges. But

∑
j aj diverges.

15



16 CHAPTER 3. SERIES OF NUMBERS

7. We will prove the more general fact that if
∑∞

j=1 aj and
∑∞

j=1 bj are
convergent series of positive numbers, then

(
∞∑

j=0

ajbj

)2

≤
(

∞∑

j=0

a2
j

)(
∞∑

j=0

b2j

)
.

First, recall the Cauchy product of series:
(

∞∑

j=0

ajbj

)(
∞∑

j=0

ajbj

)
=

∞∑

n=0

(
n∑

j=0

an−jbn−jajbj

)

=
1

2

∞∑

n=0

n∑

j=0

[
a2

n−jb
2
j + a2

jb
2
n−j

]
.

To prove the inequality observe that, for each j,

2an−jajbn−jbj ≤ a2
n−jb

2
j + a2

jb
2
n−j

because of the inequality

2cd ≤ c2 + d2.

Finally notice that

∞∑

n=0

n∑

j=0

a2
n−jb

2
j =

(
∞∑

j=0

a2
j

)(
∞∑

j=0

b2j

)

and
∞∑

n=0

n∑

j=0

a2
jb

2
n−j =

(
∞∑

j=0

a2
j

)(
∞∑

j=0

b2j

)

by the Cauchy product formula again. The proof of the inequality is
complete.

In order to finish the exercise notice that for

α > 1/2

the series
∞∑

j=1

1

(jα)2
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is convergent and so is
∞∑

j=1

bj.

9. Of course bj/j
2 ≤ bj, so that

∑
j bj/j

2 converges by the Comparison
Test.

11. If α > 1, then we have convergence by the Comparison Test. If α =
1, then we have convergence provided that β > 1 (by the Cauchy
Condensation Test). Otherwise we have divergence.

3.2 Elementary Convergence Tests

1. If
∑∞

j=1 bj converges than bj −→ 0. Then there exists N > 0 such that
for j ≥ N, bj ≤ 1. If p is a polynomial with no constant term, then
ther exists x0 and a constant C > 0 such that for 0 ≤ x ≤ x0,

p(x) ≤ C · x.

Indeed, if p(x) = a1x+ a2x
2 + · · ·+ anx

n, then p(x) ≤ 2a1x for x close
enough to 0. Since

∑∞
j=1 bj converges, bj → 0. Then there exists N such

that, for j > N , bj < x0. Thus,

p(bj) < Cbj.

By the Comparison Test we are done.

3. For the first series, the Root Test gives

|1/j|1/j → 1 ,

which is inconclusive. The Ratio Test gives

1/(j + 1)

1/j
=

j

j + 1
→ 1 ,

which is inconclusive.

For the second series, the Root Test gives

|1/j2|1/j → 1 ,
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which is inconclusive. The Ratio Test gives

1/(j + 1)2

1/j2
=

j2

(j + 1)2
→ 1 ,

which is inconclusive.

However we know that
∑

j 1/j diverges and
∑

j 1/j2 converges.

5. By our hypothesis, there is a number 0 < β < 1 and an integer N > 1
such that, for all j > N , it holds that

∣∣∣∣
aj+1

aj

∣∣∣∣ < β

or
|aj+1| < β|aj| .

We may apply the last line with j replaced by j + 1 to obtain

|aj+2| < β|aj+1|

hence
|aj+2| < β2|aj| .

Continuing, we finally obtain

|aj+k| < βk|aj| .

Thus we see that the series
∑∞

j=N+1 |aj| is majorized by the convergent

geometric series |aN | ·
∑∞

j=N+1 β
j−N . Hence the series converges.

7. Assume that all the aj are positive. Let lim inf aj+1/aj = a. Plainly
a ≥ 0. If a = 0 then there is nothing to prove, so suppose that a > 0.
Let 0 < α < a. Certainly there is a positive integer N so that

aj+1

aj
> α (∗)

when j ≥ N . For M > N , multiply together the inequalities (∗) for
j = N,N + 1, . . . ,M − 2,M − 1 to obtain

aM

aN

> αM−N
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hence
M
√
aM > α · M

√
aNα−N . (∗∗)

Taking the liminf as M → ∞, we find that

lim inf
M→∞

M
√
aM ≥ lim inf

M→∞
α · M

√
aNα−N = α .

Since α was an arbitrary positive number less than a, we conclude that

lim inf
M→∞

M
√
aM ≥ lim inf

aM+1

aM
.

A similar argument shows that

lim sup
M→∞

M
√
aM ≤ lim sup

aM+1

aM

.

This shows that if a series passes the Ratio Test then it also passes the
Root Test.

9. TRUE. Since
∑

j bj converges, the terms bj tend to zero. Hence, for j
sufficiently large, 0 < bj < 1. Therefore

ajbj < aj .

So the convergence of
∑

j ajbj follows from the Comparison Test.

3.3 Advanced Convergence Tests

1. We note that
bj

1 − bj
≤ bj

1/2
= 2bj .

So the series
∑

j bj/(1 − bj) converges by the Comparison Test.

3. Let f(x) =
√
x. Applying the Mean Value Theorem (see Section 6.2,

or consult your calculus book), we see that

f(2j + 3) − f(2j) = ((2j + 3) − 2j) · f ′(ξ)

for some 2j ≤ ξ ≤ 2j + 3. Since f ′(ξ) = 1/(2
√
ξ), we find that

|f(2j + 3) − f(2j)| ≤ 3

2
√

2j1/2
.
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Thus the summands of the series are majorized by

(
(2j + 3)1/2 − (2j)1/2

j3/4

)
≤ 3

2
√

2j5/4
.

The sum of the terms on the right converges. So the original series is
absolutely convergent.

5. Suppose that

p(j) = a0 + a1j + a2j
2 + · · · + akj

k

is a polynomial with integer coefficients.

(a) Suppose that p has the property that p(j) is even for every integer
j. If we add a term ak+1j

k+1 to p in order to increase the degree
of p by 1, then we are adding a term that alternates in parity
(odd-even-odd-even etc. It follows that the new polynomial

p̃(j) = a0 + a1j + a2j
2 + · · · + akj

k + ak+1j
k+1

alternates parity.

(b) Suppose instead p has the property that p(j) is odd for every
integer j. If we add a term ak+1j

k+1 to p in order to increase
the degree of p by 1, then we are adding a term that alternates in
parity (odd-even-odd-even etc. It follows that the new polynomial

p̃(j) = a0 + a1j + a2j
2 + · · · + akj

k + ak+1j
k+1

alternates parity.

(c) Suppose instead that p has the property that p(j) alternates parity
with increasing j. If we add a term ak+1j

k+1 to p in order to
increase the degree of p by 1, then we are adding a term that
alternates in parity (odd-even-odd-even etc. It follows that the
new polynomial

p̃(j) = a0 + a1j + a2j
2 + · · · + akj

k + ak+1j
k+1

is either always even or always odd.

This proves the required assertion about p(j).
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7. Refer to the solution of Exercise 7 in Section 3.1. Let aj = (γj)
1/2 and

bj = 1/jα. Then we know that

∑

j

(γj)
1/2 · 1

jα
≤
(
∑

j

γj

)1/2

·
(
∑

j

1

j2α

)1/2

.

As long as α > 1/2, both series on the right converge. So the series on
the left converges.

When α = 1/2, consider the example of γj = 1/(j · (log(j + 1))1.1).
Then

∑
j γj converges but

∑

j

(γj)
1/2 · 1

j1/2
=
∑

j

1

j · (log(j + 1)0.55)
,

and that series diverges.

* 9. The series
∑

j 1/j diverges. Moreover, it can be shown that the partial
sum sj has size C · log(j + 1). Thus bj/sj ≈ 1/(j log j). And the series

∑

j

1

j log(j + 1)

diverges.

3.4 Some Special Series

1. We will do the sum of the first N perfect cubes. Let the inductive
statement P (N) be

The sum of the first N perfect cubes is

SN =
N2(N + 1)2

4
.

Clearly P (1) is true since then SN = 1 · 4/4 = 4. Now assume that
P (j) has been proved. Thus

13 + 23 + · · · + j3 =
j2(j + 1)2

4
.
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We add (j + 1)3 to both sides. So

13 + 23 + · · · + j3 + (j + 1)3 =
j2(j + 1)2

4
+ (j + 1)3 .

Notice that the lefthand side is just the sum of the first (j + 1)
perfect cubes. We use some algebra to simplify the righthand side:

j2(j + 1)2

4
+ (j + 1)3 =

j4 + 2j3 + j2 + 4j3 + 12j2 + 12j + 4

4

=
j4 + 6j3 + 13j2 + 12j + 4

4

=
(j2 + 2j + 1) · (j2 + 4j + 4)

4

=
(j + 1)2 · (j + 2)2

4
.

Thus we have

13 + 23 + · · · + j3 + (j + 1)3 =
(j + 1)2 · (j + 2)2

4
.

This is P (j + 1). So we have completed the induction and the formula
is proved.

3. Notice that, no matter what the value of k,

1

| ln j|k ≥ 1

j

for j sufficiently large. By the Comparison Test, the series diverges.

5. Suppose that p is a polynomial of degree k. For j large, p(j) is compa-
rable to C · jk. So we should compare with the series

∑
j e

C·jk

. If C is
negative, then the series converges by the Root Test. If C is positive,
then the terms of this series do not tend to 0. So the series diverges.

7. If both π + e and π − e are algebraic, then (according to Exercise 6)
(π + e) + (π − e) = 2π is algebraic. But that is false. So one of π + e
or π − e must be transcendental.



3.5. OPERATIONS ON SERIES 23

3.5 Operations on Series

1. Let aj = 1/j3 and bj = 1/j4. We know that

cm =
m∑

j=0

ajbm−j

=

m∑

j=0

1

j3
· 1

(m− j)4

≤
[m/2]∑

j=0

1 · 1

(m/2)4
+

m∑

[m/2]

1

(m/2)3
· 1

≈ m

2
· 16

m4
+
m

2
· 8

m3

=
8

m3
+

4

m2
.

Thus ∑

m

cm ≤
∑

m

8

m3
+
∑

m

4

m2
.

The two series on the right converge, hence
∑

m cm converges.

3. The safest way to consider the composition of two power series

A =

∞∑

j=0

ajx
j

and
B =

∑

j

b∞j=0x
j

is to consider their partials sums

SA
N =

N∑

j=0

ajx
j

and

SB
N =

N∑

j=0

bjx
j .
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Then the composition SA
N ◦SB

N makes perfect sense and we can consider
the limit of the composition as N → ∞.

5. The convergence follows from Exercise 7 in Section 3.1.

7. Let A =
∑

j aj be a convergent series and let c be a nonzero constant.

Let SN =
∑N

j=1 aj be the partial sums for the series A. Then cSN are
the partial sums for the series

∑
j caj. Let ε > 0. Choose M so large

that |SN − α| < ε/|c| when N > M .

For such N we have

|cSN − cα = |c||SN − α| < |c| · |ε||c| = ε .

It follows that cSN → cα, so the series
∑

j caj converges to cα.

* 9. Let A =
∑∞

j=0 ajx
j be a power series. Let SN =

∑N
j=0 ajx

j be a partial
sum. Then

eSN = ea0 · ea1x · ea2x2 · · · · · eaNxN

.

So we see that the exponential of a power series can be interpreted in
the language of an infinite product.



Chapter 4

Basic Topology

4.1 Open and Closed Sets

1. Let t ∈ T . Then there is an s ∈ S with |t − s| < ε. Let x ∈ (t − (ε −
|t− s|), t+ (ε− |t− s|)). Then

|x− s| ≤ |x− t| + |t− s| < [ε− |t− s|] + |t− s| = ε .

Hence x ∈ T . This shows that T is open.

3. The set S = [0, 1) is not open and it is also not closed.

5. Let Xj = [j,∞). Then X1 ⊇ X2 ⊇ X3 ⊇ · · · but ∩jXj = ∅.

7. Let Uj = (−1/j, 1 + 1/j). Then U1 ⊇ U2 ⊇ U3 ⊇ · · · and ∩jUj = [0, 1].

9. The set S is not open because if q ∈ S and ε > 0, then (q − ε, q + ε)
contains both rational and irrational points. The complement of S is
the set of irrational numbers. It is not open because if x ∈ cS and ε > 0
then (x− ε, x+ ε) contains both rationals and irrationals. So S is not
closed.

* 11. Let x 6∈ S. If s ∈ S then |x− s| > 0. If there exist sj ∈ S so that

|x− sj| → 0 ,

then let ε > 0. If j is larger than some N > 0, then

|x− sj| < ε .

25
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Thus if j, k > N , then

|sj − sk| ≤ |sj − x| + |x− sk| < ε+ ε .

We conclude that the sequence {sj} is Cauchy. Since S is closed, we
may conclude that {sj} has a limit point s∗ ∈ S. And it follows that
|x− s∗| = 0. But this means that x ∈ S. And that is impossible. Thus
x has a positive distance ε from S.

Now if x, y ∈ R and s ∈ S, then

|x− s| ≤ |x− y|+ |y − s| .

Taking the infimum on the left over all s ∈ S yields

dist(x, S) ≤ |x− y|+ |y − s| .

Now choosing s to be very nearly the nearest point in S to y, we see
that

dist(x, S) ≤ |x− y|+ dist(y, S) . (∗)

Reversing the roles of x and y gives the similar inequality

dist(y, S) ≤ |x− y| + dist(x, S) . (∗∗)

Now combining (∗) and (∗∗) we find that

|dist(x, S)− dist(y, S)| ≤ |x− y| .

4.2 Further Properties of Open and Closed

Sets

1. The set S is the intersection of all closed sets that contain S. So
certainly S contains S. If x 6∈ S, then x 6∈ E for some closed set E
that contains S. Fix such an E. Then there is an ε > 0 such that
(x− ε, x+ ε) ⊆ cE. But S ⊆ E so (x− ε, x+ ε) ⊆ cS. Thus S is closed.

If x ∈ S \
◦
S , then there is no ε > 0 so that (x − ε, x+ ε) ⊆ S. So

(x− ε, x+ ε) intersects cS. But x ∈ S, so x intersects every closed set
that contains S. If there were an ε > 0 so that (x − ε, x+ ε) ∩ S = ∅,
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then R \ (x − ε, x + ε) would be a closed set containing S that does
not have x as an element. That is a contradiction. Thus every open
interval about x intersects both S and cS. So x ∈ ∂S.

Conversely, if x ∈ ∂S, then every neighborhood of x intersects both
S and cS. So x is not in the interior of S. If E is a closed set containing
S and x 6∈ E, then x could not be in the boundary of S. So x ∈ S.

Hence ∂S ⊆ S \
◦
S .

3. Let Ej = [1/j, 1 − 1/j]. Each Ej is closed, but ∪jEj = (0, 1), which is
open.

Let Ej = [0, 1] for every j. Then each Ej is closed. Also ∪jEj = [0, 1],
which is closed.

Let Ej = [0, 1 − 1/j]. Then each Ej is closed, but ∪jEj = [0, 1) is
neither open nor closed.

5. Let S ⊆ R be any set. Let x lie in
◦
S . By definition, there is an

ε > 0 so that (x − ε, x + ε) ⊆ S. Now let t ∈ (x − ε, x + ε). Let
δ = min{((x+ ε) − t), t− (x − ε)}. Let s ∈ (t − δ, t+ δ). Assume for
simplicity that t < x. Then

|x− s| ≤ |x− t| + |t− s| < (x− t) + (t− x+ ε) = ε .

Therefore s ∈ (x− ε, x+ ε). We conclude that (t−δ, t+δ) ⊆ (x− ε, x+

ε) ⊆ S. So
◦
S is open.

If S is open then each s ∈ S has an ε > 0 so that (s− ε, s+ ε) ⊆ S.

Thus S ⊆
◦
S . Also if x ∈

◦
S then there is a δ > 0 so that (x−δ, x+δ)⊆ S.

So x ∈ S. Therefore, if S is open then S =
◦
S .

Conversely, if S =
◦
S , then each x ∈ S has an ε > 0 so that

(x− ε, x+ ε) ⊆ S. So S is open.

7. If x ∈ R and ε > 0 then the interval (x− ε, x+ ε) contains both points
of S and points of cS. This shows that x is not an interior point of S,
but that x is a boundary point of S. So every real is in the boundary
of S and no real is in the interior of S. If E is a closed set that contains
S then E must contain all the limit points of S so E must contain R.
Thus the closure of S is the entire real line.
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* 9. Let S = {(x, 1/x) : x ∈ R, x > 0}. Certainly S ⊆ R2 is closed. But the
projection to the x-axis is πS = {x ∈ R : x > 0} which is open and not
closed.

4.3 Compact Sets

1. Let E be closed and K compact. Then K is closed and bounded. It
follows that E ∩ K is closed. Also E ∩ K is bounded. So E ∩ K is
compact.

3. If not then there exist points kj ∈ K and `j ∈ L so that |kj − `j | → 0
as j → ∞. By the compactness of K, we may choose a subsequence
kjm that converges to a point k0 ∈ K. We see that

|`jm | ≤ |`jm − kjm | + |kjm − k0| + |k0| .

The first term on the right tends to 0, the second tends to 0, and the
third is a fixed constant. So we see that |`jm | is bounded. By Bolzano-
Weierstrass, there is a convergent subsequence `jmn

which converges to
some point `0 ∈ L.

But now it follows that

|k0 − `0| = lim
n→∞

|kjmn
− `jmn

| = 0 .

So k0 = `0. This contradicts the hypothesis that K and L are disjoint.
It follows that there is a positive distance between K and L.

5. For each k ∈ K, choose a δk > 0 so that the interval (k − δk, k + δk)
lies in some Uj. The intervals (k − δk/3, k + δk/3) form an open cover
of K. So there is a finite subcover

(k1−δk1
/3, k1+δk1

/3), (k2−δk2
/3, k2+δk2

/3), . . . , (k`−δk`
/3, k`+δk`

/3) .

Now if p is any point of K, then p lies in some (kj −δkj
/3, kj +δkj

/3)
which in turn lies in some Ukj

. But then, by the triangle inequality,
(p− δkj

/3, p + δkj
/3) also lies in Ukj

.

7. The set K̂ will be bounded and closed, so it will certainly be compact.
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9. The intersection of any number of closed sets is closed. And the inter-
section of any number of bounded sets is bounded. So the intersection
of any number of compact sets is compact.

11. The open set U = (0,∞) is unbounded, so it plainly cannot be written
as the decreasing intersection of compact sets.

4.4 The Cantor Set

1. There is nothing special about 5 in this problem. Let 0 < λ < 1 be
fixed (you can set λ = 1/5 if you like). Let us introduce a convention.
If a set S is the union of finitely many disjoint intervals, we define the
length of S to be the sum of the lengths of the intervals whose union is
S. For the first step we remove the middle λ-part of the interval [0, 1].
This produces a set, call it S1, that is the union of two intervals the
sum of whose lengths is 1 − λ, that is, the length of S1 is 1 − λ. From
each of these intervals remove the middle λ -part. This produces a set,
call it S2, (a union of four intervals) whose length is

1 − λ− λ(1 − λ) = (1 − λ)2.

Now continue this process. At the jth step we have the set Sj of length
(1− λ)j . The set Sj+1 is obtained by removing the λ-part of it. Hence
Sj+1 has length

(1 − λ)j − λ(1 − λ)j = (1 − λ)j+1.

Notice that we are always measuring the length of the set that we save.
The Cantor-like set C is obtained as

C =

∞⋂

j=1

Sj.

Also notice that

Sj ⊇ Sj+1 for all j.

Then

length(Sj) ≥ length(Sj+1).
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But

lim
j→∞

length(Sj) = lim
j→∞

(1 − λ)j = 0.

We see that the length of the Cantor-like set is 0. The set C is compact
(and non-empty) since it is the intersection of nested compact sets.
Moreover, C is totally disconnected. Arguing as in the text, let δ =

|x− y|, and let j satisfy (1−λ)j

2j < λ. Notice that the set Sj is the union

of 2j intervals each of length (1−λ)j

2j . Since x, y both belong to Sj, they
cannot lie in the same interval. Hence between x and y there exist
numbers that are not in C . Thus, C is totally disconnected.

The proof that C is perfect is exactly as in the text for the case λ = 3.

3. Let U = (−1, 0) and V = (0, 1). Then U and V are disjoint open sets,
but the distance between U and V is 0.

5. Each removed interval has two endpoints, and there are countably many
removed intervals. So the total number of endpoints is countable. The
Cantor set is uncountable. So the number of non-endpoints is uncount-
able.

7. When j = 1 then the possible first terms for the series are 0/3 and 2/3.
These are the left endpoints of the remaining intervals from the first
step of the Cantor construction.

When j = 2 then the possible first terms for the series are 0/9 and 2/9.
When these are added to the two possibilities for the J = 1 term we
get four possible points. In fact they are the left endpoints of the four
remaing intervals. And so forth for j = 3, 4, . . . .

Every element of the Cantor set is the limit of a sequence of the end-
points. This follows from the construction. So the series

∞∑

j=1

µjaj

indeed describes the Cantor set. And, as we have already indicated,
the finite partial sums describe the endpoints.
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9. Using the characterization of the Cantor set given in Exercise 7, we see
that

C+C =

{
∞∑

j=1

µjaj +
∞∑

j=1

λjaj : µj = 0 or 2, λj = 0 or 2

}
=

{
∞∑

j=1

τjaj : τj = 0 or 2 or 4

}
.

It is not difficult to see that the expression on the right equals the
interval [0, 2].

* 11. Certainly any sequence of the form aj = ρj for 0 < ρ < 1/3 will do the
job.

4.5 Connected and Disconnected Sets

1. The set X = [s, t] is connected. To see this, suppose to the contrary
that there exist open sets U and V such that U ∩ X 6= ∅, V ∩ X 6=
∅, (U ∩X) ∩ (V ∩X) = ∅, and

X = (U ∩X) ∪ (V ∩X) .

Choose a ∈ U ∩X and b ∈ V ∩X. Set

α = sup (U ∩ [a, b]}) .

Now [a, b] ⊆ X hence U ∩ [a, b] is disjoint from V . Thus α ≤ b. But cV
is closed hence α 6∈ V . It follows that α < b.

If α ∈ U then, because U is open, there exists an α̃ ∈ U such
that α < α̃ < b. This would mean that we chose α incorrectly. Hence
α 6∈ U . But α 6∈ U and α 6∈ V means α 6∈ X. On the other hand, α
is the supremum of a subset of X (since a ∈ X, b ∈ X, and X is an
interval). Since X is a closed interval, we conclude that α ∈ X. This
contradiction shows that X must be connected.

3. Let S = {q ∈ [0, 1] : q ∈ Q}.

5. If a and b are distinct elements of the Cantor set, then let ε = |b−a| > 0.
Choose j so large that 3−(j−3) < ε. Then a and b live in different closed
intervals in the set Sj in the construction of the Cantor set. So a and
b must be in different connected components of C .
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7. Let A = [0, 1] and B = [2, 3]. Then A and B are each connected but
A ∪B is not connected.

9. In general A∩B will be disconnected. Consider A = [0, 1] and B equals
the Cantor set.

4.6 Perfect Sets

1. Let Uj = (−∞,−1 − 1/j) ∪ (1 + 1/j,+∞). Then it is clear that
U1 ⊆ U2 ⊆ · · · and each Uj has bounded, nonempty complement. But

⋃

j

Uj 6⊇ [−1/2, 1/2] .

Hence
⋃

j Uj 6= R.

3. If S ⊆ R is perfect and T ⊆ R is perfect, then consider S×T ⊆ R×R.
Certainly S × T is closed. If (s, t) ∈ S × T then s is the limit of a
sequence sj ∈ S and t is the limit of a sequence tj ∈ T so (s, t) is the
limit of the sequence (sj, tj). Hence S × T is perfect.

5. Let A = [0, 1] ∩ Q and B = [0, 1] \ Q. Then A ∪ B = [0, 1] is perfect,
but neither A nor B is perfect.

7. A nontrivial, closed interval [a, b] is perfect and the Cantor set is perfect.
The interior of [a, b] is (a, b) while the interior of the Cantor set is ∅.
So it is hard to say anything about the interior of a perfect set.

* 11. Let S be any closed set and let C ⊆ S be the set of condensation points.
Then S \C must be countable or else, by Exercise 10, S \C would have
condensation points.
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Limits and Continuity of
Functions

5.1 Definition and Basic Properties of the Limit

of a Function

1. Say that the limit of f is `1 and the limit of g is `2. Let ε > 0. Choose
δ1 > 0 so that 0 < |x− c| < δ1 implies that |f(x) − `1| < ε/2. Choose
δ2 > 0 so that 0 < |x − c| < δ2 implies that |g(x) − `2| < ε/2. Let
δ = min{δ1, δ2}. If 0 < |x− c| < δ, then

`1 = (`1 − f(x)) + (f(x) − g(x)) + (g(x) − `2) + `2 <
ε

2
+ 0 +

ε

2
+ `2 .

In summary, we see that, for any ε > 0,

`1 ≤ `2 + ε .

It follows that
`1 ≤ `2 .

3. Let f be a function with domain a set of the form (a, c) ∪ (c, b). We
say that limx→c f(x) = ` if, given any open neighborhood U of `, there
is an open neighborhood V of c so that f(V ) ⊆ U .

5. Define

f(x) =

{
0 if x is irrational
1/q if x = p/q is a rational in lowest terms .

33
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Then it is easy to see that limx→c f(x) = 0 at each point c, but f is
discontinuous at each rational number.

7. We shall prove part (a). Part (c) is similar. Let ε > 0. Choose
δ1 > 0 so that 0 < |x − P | < δ1 implies that |f(x) − `| < ε/2. Choose
δ2 > 0 so that 0 < |x − P | < δ2 implies that |g(x) − m| < ε/2. Let
δ = min{δ1, δ2}. If |x− P | < δ then

|(f(x) + g(x)) − (`+m)| ≤ |f(x) − `| + |g(x) −m| < ε

2
+
ε

2
= ε .

Hence
lim
x→P

(f(x) + g(x)) = ` +m.

9. Let ε > 0. Set δ = ε. If 0 < |x− 0| < δ then

|f(x) − 0| = |x sin(1/x) − 0| = |x sinx| ≤ |x| < δ = ε .

Thus
lim
x→0

f(x) = 0 = f(0) .

We see that f is continuous at the origin.

Now let ε = 1/2. Let xj = 1/((j + (1/2))π) for j = 1, 2, . . . . Then

g(xj) = 1

for j even and
g(xj) = −1

for j odd. So limx→0 g(x) does not exist.

* 11. See the solution to Exercise 5 above.

5.2 Continuous Functions

1. This function is discontinuous at every point except the origin. First
suppose that c is a rational number unequal to 0. If xj is a se-
quence of irrationals approaching c then f(xj) = 0 but f(c) = c. So
limx→c f(x) 6= f(c). Now suppose that c is irrational. If xj are ratio-
nal numbers approaching c then f(xj) = xj. Hence limj→∞ f(xj) =
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limj→∞ xj = c. But f(c) = 0. So f is discontinuous at c. Finally
suppose that c = 0. If xj is a sequence of irrationals approaching c
then f(xj) = 0 while if yj is a sequence of rationals approaching c then
f(yj) = yj → c = 0. In any event, limx→0 f(x) = 0 = f(0). So f is
continuous at 0.

3. Refer to the solution of Exercise 2 in Section 5.1.

5. Let f(x, y) = x.

7. Refer to the solution of Exercise 5 in Section 5.1.

9. For simplicity let f be a continuous function from R to R. Let E be a
closed set in R. Consider f−1(E). If f−1(E) is not closed, then there is
a convergent sequence of points xj ∈ f−1(E) such that the limit point
x0 is not in f−1(E). This means that the f(xj) lie in E but f(x0)
does not lie in E. Most importantly, the continuity of f implies that
f(xj) → f(x0). And E is closed so f(x0) must lie in E. That is a
contradiction.

The reasoning for the converse direction is similar.

* 11. The composition of uniformly continuous functions is indeed uniformly
continuous. To see this, suppose that f : R → R is uniformly continu-
ous and g : R → R is uniformly continuous. Let ε > 0. Choose η > 0
so that, if |s− t| < η then |g(s)− g(t)| < ε. Next choose δ > 0 so that,
if |x− y| < δ then |f(x) − f(y)| < η.

Now if |x− y| < δ then |f(x) − f(y)| < η and therefore |g(f(x)) −
g(f(y))| < ε. So g ◦ f is uniformly continuous.

5.3 Topological Properties and Continuity

1. Certainly f is nonnegative at all x. But the function f(x) = (x−
√

2)2

is positive for all rational x and equal to zero at x =
√

2.

3. Let f(x) = x2 and U = (−1, 1). Then f(U) = [0, 1), which is not open.

5. Let f : R → R. Define f(x) = x2. Then the intervals [−2,−1] and
[1, 2] are disjoint, but f([−2,−1]) = f([1, 2]) = [1, 4].
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By contrast, if C and D are disjoint then f−1(C) and f−1(D) are
disjoint. That is because if f(x) ∈ C then certainly f(x) 6∈ D and if
f(x) ∈ D then certainly f(x) 6∈ C .

7. Let f(x) = sinx and let A = [0, π/2] ∪ [2π, 5π/2] ∪ [4π, 9π/2] ∪ · · · ∪
[2kπ, (4k + 1)π/2] . Then A has k connected components, but f(A) =
[0, 1], which has one connected component.

9. The function f : (0, 1) → (0, 1) given by f(x) = x2 has no fixed point.

11. Now E ∪ F is closed so the complement of (E ∪ F ) is open. Therefore

c(E ∪ F ) =
∞⋃

j=1

Ij

is the pairwise disjoint union of open intervals. Write Ij = (aj, bj).
Now define

f(x) =






0 if x ∈ E

1 if x ∈ F

x− a

b− a
if x ∈ Ij, aj ∈ E, bj ∈ F

−1

b− a
(x− b) if x ∈ Ij, aj ∈ F, bj ∈ E

4

(b− a)2 + 4

[(
x− a + b

2

)2

+ 1

]
if x ∈ Ij, aj ∈ F, bj ∈ F .

Then f is continuous, E = f−1(0), and F = f−1(1).

* 13. If the conclusion is not true, then there is an ε > 0 and points x
arbitrarily close to a so that |f(x) − c| > ε and |f(x) − d| > ε. But
this implies that f−1([c+ ε, d− ε]) contains points x that are arbitrarily
near to a. Thus f−1 of the compact set [c + ε, d − ε] is not compact.
Contradiction.
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5.4 Classifying Discontinuities and Monotonic-

ity

1. Write A = {aj}∞j=1. Define

f(x) =

{
0 if x < a1

j if aj ≤ x < aj+1

Then it is clear that f is increasing and has a jump discontinuity at
each aj.

This is impossible for an uncountable set A because the only possible
discontinuities for an increasing function are jump discontinuities. And
there can only be countably many jump discontinuities.

3. Let

f(x) =

{
−1 if x ≤ 0
1 if x > 0 .

Then f is discontinuous at the origin, but f2(x) ≡ 1 is continuous at
every point.

If f3 is continuous at every point, then

f(x) = [f3(x)]1/3

is the composition of continuous functions, so is certainly continuous.

5. The set [a, b] is connected, so f([a, b]) will be connected. And the only
connected sets are intervals, so f([a, b]) is an interval. As we indicated
in Exercise 2 of Section 5.2, f([a, b]) can be an interval of any of the
four types.

* 9. Now let x, y lie in the domain of f . Assume without loss of generality
that f(x) = 0 and we shall prove that f is continuous at x. For
0 ≤ t ≤ 1, we know that

f((1 − t)x+ ty) ≤ (1 − t)f(x) + tf(y) . (∗)

We think of t as positive and small, so that (1 − t)x+ ty is close to x.
Then we see that

|f((1 − t)x+ ty)| ≤ t|f(y)| .
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That shows that
lim
s→x

f(s) = 0 = f(x) ,

so that f is continuous at x.

In calculus we learn that a twice differentiable function is “concave
up” if f ′′(x) ≥ 0. Now we look at

(1 − t)f(a) + tf(b) − f((1 − t)a+ tb) = t[f(b)− f((1 − t)a + tb)]

−(1 − t)[f((1 − t)a+ tb) − f(a)]

= tf ′(ξ)(1 − t)(b− a)

−(1 − t)f ′(ξ̃)t(b− a) ,

where we have applied the Mean Value Theorem twice. Now we shall
apply the Mean Value Theorem again to rewrite the last line as

t(1 − t)(b− a)f ′′(
˜̃
ξ) ≥ 0 .

We have proved, assuming that f ′′ ≥ 0, that

(1 − t)f(a) + tf(b) − f((1 − t)a+ tb) ≥ 0 ,

which is the same as

f((1 − t)a + tb) ≤ (1 − t)f(a) + tf(b) .

So an f with nonnegative second derivative is convex according to our
new definition.

11. The assertion is true, and remains true if the function is continuously
differentiable.



Chapter 6

Differentiation of Functions

6.1 The Concept of Derivative

1. This assertion is false for every k ≥ 2. We give just a few examples:

• Let f(x) = |x|. Then f2(x) = x3 is differentiable at all points,
but f fails to be differentiable at the origin.

• Let f(x) = x1/3. Then f3(x) = x is differentiable at all points,
but f fails to be differentiable at the origin.

• Let

f(x) =

{
0 if x < 0
x if x ≥ 0 .

Then

f4(x) =

{
0 if x < 0
x4 if x ≥ 0 .

We see that f4 is certainly differentiable at the origin but f is not.

3. This function is certainly not differentiable at any rational. If q ∈
R is rational and positive, then write q = a/b, where a and b are
positive integers and the fraction is in lowest terms. Now we examine
the Newton quotient

Q =
f(q + h) − f(q)

h
.

If q+h is irrational (say h is a small multiple of
√

2) then Q = (−1/b)/h
blows up as h→ 0. So f is not differentiable at q.

39
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The analysis of differentiability at irrational points is more difficult
and we omit it.

5. Let f be defined on the interval (a, b]. We say that f is left continuous

at the point b if
lim

h→0−
f(b+ h) = f(b) .

We say that f is left differentiable at the point b if

lim
h→0−

f(b+ h) − f(b)

h

exists. We denote the left derivative of f by f ′
`. Right continuity and

right differentiability are defined similarly.

Now suppose that f is left differentiable at b as above. Then

lim
h→0−

[f(b+ h) − f(b)] = lim
h→0−

(
f(b + h) − f(b)

h
· h
)

=

(
lim

h→0−

f(b + h) − f(b)

h

)
· ( lim

h→0−
h)

= f ′
`(b) · 0 = 0 .

Thus f is left continuous at b.

The result for right differentiability and right continuity is proved
in just the same fashion.

7. We see that the discontinuity is of the second kind.

* 13. Let f be a function that is differentiable at a point x in the domain
interval I for f .

(a) We can calculate that

lim
h→0

f2(x+ h) − f2(x)

h
= lim

h→0

([
f(x+ h) − f(x)

h

]
· [f(x+ h) + f(x)]

)
, . = lim

h→0

[
f(x

Since f is differentiable at x, the first expression in brackets tends
to f ′(x). Since f is then continuous at x, the second expression
in brackets tends to 2f(x). Altogether then,

(f2)′(x) = 2f(x) · f ′(x) .
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(b) Applying the result of part (a) to the function f + g, we find that
[
(f + g)2

]′
(x) = 2(f + g)(x) · (f + g)′(x) .

(c) We can write this out as

[f2]′(x)+[2fg]′(x)+[g2]′(x) = 2f(x)·f ′(x)+2f(x)·g′(x)+2f ′(x)·g(x)+2g(x)·g′(x) .
Cancelling out matching terms (using part (a)), we find that

[2fg]′(x) = 2f(x) · g′(x) + 2f ′(x) · g(x)
or

[fg]′(x) = f(x) · g′(x) + f ′(x) · g(x) .

6.2 The Mean Value Theorem and Applica-

tions

1. We can calculate that

|f(x)| =

∣∣∣∣
∫ x

0

f ′(t) dt

∣∣∣∣ ≤
∫ x

0

|f ′(t)| dt ≤
∫ x

0

|f(t)| dt .

Let

F (x) =

∫ x

0

|f(t)| dt .

Then F is an antiderivate of |f |. And we have

|f(x)| ≤ F (x) .

This can be rewritten as

|f(x)|
F (x)

≤ 1 .

Integrating both sides from 0 to x gives

log F (x) ≤ x .

This can be rewritten as
F (x) ≤ ex .

From this we conclude that

|f(x)| ≤ F (x) ≤ ex .
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3. If f is neither increasing or decreasing on I , then there are two possi-
bilities: (i) f ′ ≡ 0, in which case f is constant, or (ii) f is increasing
on some subinterval J of I and f is decreasing on some other subinter-
val J ′ of I . In the second scenario, it must be that f has an interior
local minimum P or an interior local maximum Q. That would be a
contradiction.

5. We may write

f ′(x) = f ′(0) +

∫ x

0

f ′′(t) dt ≥ f ′(0) +

∫ x

0

c dt ≥ f ′(0) + cx .

Therefore

f(x) = f(0)+

∫ x

0

f ′(t) dt ≥ f(0)+

∫ x

0

(f ′(0)+ct) dt = f(0)+f ′(0)x+
cx2

2
.

Clearly the function on the right is not bounded above, so f is not
bounded above.

7. The derivative of fk is k · fk−1 · f ′. So clearly we need f > 0 for the
desired conclusion to be true.

9. Let ϕ(t) = t1/2. We asked to evaluate the behavior at +∞ of ϕ(x +
1) − ϕ(x). By the Mean Value Theorem we have

ϕ(x+ 1) − ϕ(x) = [(x+ 1) − x] · ϕ′(ξ)

for some ξ between x and x+ 1. Thus

|ϕ(x+ 1) − ϕ(x)| ≤ 1 · 1

2
x−1/2 .

As x → +∞, the righthand side clearly tends to 0. So the expression
ϕ(x+ 1) − ϕ(x) tends to 0.

11. Applying the usual Mean Value Theorem to h we see that

h(b) − h(a) = (b− a) · h′(ξ) (∗)
for some ξ between a and b. Writing out (∗) gives

[g(b)(f(b) − f(a)) − f(b)(g(b) − g(a))]

− [g(a)(f(b)− f(a)) − f(a)(g(b) − g(a))]

= (b− a) [g′(ξ)(f(b) − f(a)) − f ′(ξ)(g(b) − g(a))] .
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Dividing through by g(b) − g(a), we obtain

g(b) · f(b) − f(a)

g(b) − g(a)
− f(b)

−g(a) · f(b) − f(a)

g(b) − g(a)
+ f(a)

= (b− a)g′(ξ)
f(b) − f(a)

g(b) − g(a)
− f ′(ξ)(b− a) .

With some elementary algebra, this simplifies to

f(b) − f(a)

g(b) − g(a)
=
f ′(ξ)

g′(ξ)
.

6.3 More on the Theory of Differentiation

1. We write
∣∣∣∣
f(x+ h) + f(x− h) − 2f(x)

h2

∣∣∣∣ =

∣∣∣∣
(f(x+ h) − f(x)) − (f(x) − f(x− h))

h2

∣∣∣∣

=

∣∣∣∣∣
f ′(ξ) · h− f ′(ξ̂) · h

h2

∣∣∣∣∣

=

∣∣∣∣∣
f ′(ξ) − f ′(ξ̂)

h

∣∣∣∣∣

=

∣∣∣∣∣∣
f ′′(
̂̂
ξ) · h
h

∣∣∣∣∣∣

=

∣∣∣∣f
′′(
̂̂
ξ)

∣∣∣∣
≤ C .

3. When ` is even then |x|` = x`, which is infinitely differentiable. So this
case is not interesting.

The case ` = 3 is typical of the odd case. Notice that

f(x) = |x|3 =

{
−x3 if x ≤ 0
x3 if x > 0 .
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Then

f ′(x) =

{
−3x2 if x ≤ 0
3x2 if x > 0

and

f ′′(x) =

{
−6x if x ≤ 0
6x if x > 0 .

We see that f ′′ is not differentiable at the origin. But in fact f ′′ is
Lipschitz-1. So f ∈ C2,1.

In general, when ` is odd, f(x) = |x|` is in C(`−1,1).

5. If f is not invertible then f is not one-to-one. So there exist c < d such
that f(c) = f(d). It follows then that there is a point ξ, c < ξ < d,
which is either a local maximum or a local minimum for f . But then
Fermat’s lemma tells us that f ′(ξ) = 0. Contradiction.

Now consider
f−1(x+ h) − f−1(x)

h
. (∗)

We write x = f(y) and x+ h = f(ỹ). Then we may rewrite (∗) as

ỹ − y

f(ỹ) − f(y)
=

1

[f(ỹ) − f(y)]/[ỹ − y]
. (∗∗)

If h → 0 then x + h → x. Since f is invertible, we may then con-
clude that ỹ → y. So equation (∗∗) converges to 1/f ′(y). So f−1 is
differentiable.

We may derive a formula for (f−1)′ as follows. We know that

f ◦ f−1(x) = x .

Differentiating both sides gives

f ′(f−1(x)) · (f−1)′(x) = 1

or

(f−1)′(x) =
1

f ′(f−1(x))
.

This is consistent with the formula that we derived in the last para-
graph.
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7. We know from Exercise 1 above and others like it that, if f is twice
differentiable at x then

lim
h→0

f(x+ h) + f(x − h) − 2f(x)

h2
= f ′′(x) .

However, as Exercise 21 of the last section shows, the converse is not
true. There is not a simple characterization of the second derivative
that is analogous to the Newton quotient.

* 9. The function f(x) = x · ln |x| is actually in Lip-α for any α < 1.
One needs only check this assertion at the origin, and for that refer to
Exercise 4 of Section 6.2 above.

The function g(x) = |x|/ ln |x| is in C0,1 as a simple calculation will
show.
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Chapter 7

The Integral

7.1 Partitions and the Concept of Integral

1. If f is not bounded then there are points sj ∈ [a, b] so the f(sj) → ∞.
For simplicity let us assume that the values converge to +∞. LetN > 0
and choose J so large that j > J implies that f(sj) > N . Set up a
partition P given by x0 < x1 < · · · < xk so that sN+1 ∈ I1, sN+2 ∈ I2,
. . . , sN+k ∈ Ik. Now consider the Riemann sum

R(f,P) =
∑

j

f(sj)∆j ≥ N · (b− a) .

This shows that the value of the integral is at least N · (b−a). Since
N > 0 was arbitrary, we conclude that the integral does not exist.

3. The function f is continuous so it is certainly Riemann integrable.

7. The function f is, in effect, continous on each of finitely many subin-
tervals of [a, b]. One simply applies Theorem 7.10 on each of these
subintervals.

9. We shall follow the scheme presented in Remark 7.7. Given ε > 0,
choose δ > 0 as in the definition of the integral. Fix a partition P with
mesh smaller than δ. Let K + 1 be the number of points in P . Choose
points tj ∈ Ij so that |f(tj) − supIj

f | < ε/(2(K + 1)); also choose
points t′j ∈ Ij so that |f(t′j)− infIj

f | < ε/(2(K + 1)). By applying the

47
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definition of the integral to this choice of tj and t′j we find that

∑

j

(
sup
Ij

f − inf
Ij

f

)
∆j < 2ε .

The result follows from Remark 7.7.

7.2 Properties of the Riemann Integral

1. Let f be continuous and non-negative on [0, 1]. Let M = sup[0,1] f.
Let ε > 0 be fixed. Since f is continuous, there exists a δ > 0 and an
interval Iδ of length δ, Iδ ⊆ [0, 1], such that for all x ∈ Iδ,

M − ε ≤ f(x).

Then

[∫ 1

0

f(t)ndt

] 1

n

≥
[∫

Iδ

f(t)ndt

] 1

n

≥ [(M − ε)nδ]
1

n

= (M − ε)δ
1

n .

Thus,

lim inf
n→∞

[∫ 1

0

f(t)ndt

] 1

n

≥ lim
n→∞

(M − ε)δ
1

n

= M − ε.

Since ε > 0 was arbitrary we have

lim inf
n→∞

[∫ 1

0

f(t)ndt

] 1

n

≥ M.

Since

lim sup
n→∞

[∫ 1

0

f(t)ndt

] 1

n

≤M

is trivial, we are done.
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3. If f is integrable on [a, b], then

lim
ε→0+

∫ b

a+ε

f(x) dx =

∫ b

a

f(x) dx .

So no new integrable functions arise in this case.

Now let g(x) = x−1/2 on the interval (0, 1). We see that

lim
ε→0+

∫ 1

ε

x−1/2 dx = lim
ε→0+

2 · x1/2

∣∣∣∣
1

ε

= lim
ε→0+

2 − 2ε1/2 = 2 .

So g is an example of an unbounded function that can be integrated
by this new definition.

Define

h(x) =





6 if 1/3 < x ≤ 1/2
−6 if 1/4 < x ≤ 1/3
20/3 if 1/5 < x ≤ 1/4
−15/2 if 1/6 < x ≤ 1/5

and so forth. You can see that the graph of this function is alternating
positive and negative bumps, and the area of the jth bump is 1/j.
Thus it is straightforward to see that the limit

lim
ε→0+

∫ 1/2

ε

h(x) dx

exists.

Of course

|h|(x) =






6 if 1/3 < x ≤ 1/2
6 if 1/4 < x ≤ 1/3
20/3 if 1/5 < x ≤ 1/4
15/2 if 1/6 < x ≤ 1/5

The graph of |h| is a sequence of bumps of area 1/j, but now they
are all positive. Recall that the series

∑
j(−1)j/j converges, but the

harmonic series
∑

j 1/j diverges. This is why h is integrable by our
new methodology but |h| is not.
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7. Let ε > 0. Choose δ > 0 so that, if P is a partition of [a, b] with mesh
less than δ, then

|R(f,P) −
∫ b

a

f(x) dx| < ε/(α+ 1) .

Then

|R(αf,P)−
∫ b

a

αf(x) dx| < α · ε/(α+ 1) < ε .

Therefore

|R(αf,P) − α ·
∫ b

a

f(x) dx| < ε .

That proves the result.

* 9. First consider

∫ 1

η

cos 2r − cos r

r
dr.

We write this as

∫ 1

η

cos 2r

r
dr −

∫ 1

η

cos r

r
dr =

∫ 2

2η

cos s

s
ds −

∫ 1

η

cos s

s
ds

= −
∫ 2η

η

cos s

s
ds +

∫ 2

1

cos s

s
ds.

The second integral obviously exists and is finite. Let ε > 0. If η > 0
is small enough then 1 − ε < cos s < 1 on [η, 2η]. Thus

(1 − ε) log 2 =

∫ 2η

η

1 − ε

s
dx <

∫ 2η

η

coss

s
dx ≤

∫ 2η

η

1

s
ds = log 2.

We conclude that

lim
η→0

∫ 2η

η

cos s

s
ds
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exists. Therefore

lim
η→0

∫ 1

η

cos s

s
ds

exists.

The integral

lim
η→0

∫ 1/η

1

cos s

s
ds

is treated similarly.

7.3 Change of Variable and Related Ideas

1. We will concentrate on the one-sided derivative of F at a. Fix ε > 0.
Choose a δ > 0 so that, for x > a, |x−a| < δ, we have |f(x)−f(a)| < ε.
For δ > h > 0 we calculate that

∣∣∣∣
F (a+ h) − F (a)

h
− f(a)

∣∣∣∣ =

∣∣∣∣∣

∫ a+h

a
f(t) dt−

∫ a

a
f(t) dt

h
− f(a)

∣∣∣∣∣

=

∣∣∣∣∣

∫ a+h

a
f(t) dt

h
− f(a)

∣∣∣∣∣

=

∣∣∣∣∣

∫ a+h

a
f(t) dt−

∫ a+h

a
f(a) dt

h

∣∣∣∣∣

=

∣∣∣∣∣

∫ a+h

a
f(t) − f(a) dt

h

∣∣∣∣∣

≤
∫ a+h

a
|f(t) − f(a)| dt

h

≤
∫ a+h

a
ε dt

h
= ε .

This shows that F is right differentiable at a and the derivative is equal
to f(a).
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5. Since f is Riemann integrable, f is bounded by some number M . Let
ε > 0 and choose δ > 0 so that if the mesh of partitions P and P ′ is
less than δ and if Q is the common refinement of P and P ′, then

|R(f,P)−R(f,Q)| < ε/(2M) . (?)

Let Ij be the intervals that arise in the partition P and let Ĩ` be the

intervals that arise in the partition Q. Note that each Ĩ` is contained
in some interval Ij. Then it follows that

∣∣R(f2,P)−R(f2,Q)
∣∣ =

∣∣∣∣∣∣

∑

Ij

∑

eI`⊆Ij

f2(sj)∆̃` −
∑

Ij

∑

eI`⊆Ij

f2(s̃`)∆̃`

∣∣∣∣∣∣
.

(∗)
But

|f2(sj)− f2(s̃`)| = |(f(sj)+f(s̃`) ·f(sj)− f(s̃`)| ≤ 2M · |f(sj)− f(s̃`)| .

So (∗) can be estimated by

∑

Ij

∑

eI`⊆Ij

2M · |f(sj) − f(s̃`)|∆̃` .

And we know from equation (?) that the righthand side is less than ε.
It follows that f2 is Riemann integrable.

7. Some reasons are

• Differentiation comes from taking a difference while integration
comes from taking a summation.

• Differentiation measures rate of change while integration measures
aggregation.

• Differentiation reduces the complexity of a polynomial while inte-
gration increases the complexity.

9. A Riemann sum for
∫ 1

0
x2 dx, with equally spaced partition having k

intervals, is

k∑

j=1

(
j

k

)2
1

k
=

1

k3

k∑

j=1

j2 =
1

k3
· 2k3 + 3k2 + k

6
.
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In the last equality we have used a result from Exercise 1 of Section
2.4. Now this last expression tends to 1/3 as k → ∞. And it is
easy to calculate, using the Fundamental Theorem of Calculus, that∫ 1

0
x2 dx = 1/3.

7.4 Another Look at the Integral

1. We observe that
∫ 6

2

t2dβ(t) =

∫ 6

2

t2 dt+

∫ 6

2

t2 d[t] ,

where [t] is the greatest integer function. The first integral on the right
is ∫ 6

2

t2 dt =
208

3

while the second integral equals
∫ 6

2

t2 d[t] = 32 + 42 + 52 + 62 = 86 .

In sum, ∫ 6

2

t2 dt =
208

3
+ 86 =

466

3
.

3. Suppose that p(x) = a0 + a1x+ · · ·+ akx
k is a polynomial. For each j,

take α(x) = αj(x) = xj. Then our hypothesis is that

0 =

∫ b

a

p(x) dαj(x) =

∫ b

a

p(x)jxj−1 dx .

The equations

0 =

∫ b

a

p(x)xj = 0

for j = 0, 1, 2, . . . , (k + 1) imply, with a little algebra, that a0 = a1 =
· · · = ak = 0. So p is the zero polynomial.

5. We calculate that
∫ 3

0

x2 dα(x) = 12 + 22 + 32 = 14 .
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7. We shall prove part (a). Simply observe that

|U(f+g,P , α)−L(f+g,P , α)| ≤ |U(f,P , α)−L(f,P , α)|+|U(g,P , α)−L(g,P , α)| .

Now, given any ε > 0, we may choose a partition P so that

|U(f,P , α)− L(f,P , α)| < ε

2

and a partition P ′ so that

|U(g,P , α)− L(g,P , α)| < ε

2
.

Then the partition Q which is the common refinement of P and P ′ will
satisfy

|U(f + g,Q, α) − L(f + g,Q, α)| < ε .

9. We calculate that
∫ π

0

f dα =

∫ π

0

x2 dx3 =

∫ π

0

x23x2 dx = 3

∫ π

0

x4 dx =
3π5

5
.

11. The Riemann-Stieltjes integral
∫ 1

0
x dx cannot be represented as a se-

ries.

7.5 Advanced Results on Integration Theory

1. Let f(x) = sinx/x. Since limx→0 f(x) = 1, we define f(0) = 1. Now
write ∫ ∞

0

f(x) dx =

∫ 1

0

f(x) dx +

∫ ∞

1

f(x) dx .

Since f is continuous on the interval [0, 1], the first integral on the right
certainly exists. For the second, consider

∫ N

1

sinx

x
dx

for some N > 1. Integrating by parts, we find that

∫ N

1

sin x

x
dx =

− cos x

x

∣∣∣∣
N

1

−
∫ N

1

cos x

x2
dx .
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The limit of the first term on the right as N → ∞ clearly exists. Since
| cosx/x2| ≤ 1/x2, the limit of the second term on the right also exists.
So the full integral exists.

3. The function

f(x) =

{
x sin(1/x) if x 6= 0
0 if x = 0

is continuous on the entire real line. But, because the harmonic series
diverges, the sum

k∑

j=1

∣∣∣∣f
(

1

(2j + 1)π/2

)
− f

(
1

(2j − 1)π/2

)∣∣∣∣

can be arbitrarily large. So f is not of bounded variation on any interval
that has the origin in its interior.

5. In case ϕ is linear, then

ϕ

(∫ 1

0

f(x) dx

)
=

∫ 1

0

ϕ(f(x)) dx .

But any convex function is the supremum of linear functions (see [KRA8]).
Passing to the supremum gives the desired inequality.

7. Call the interval [a, b]. We know from Exercise 2 above that

V f =

∫ b

a

|f ′(x)| dx .

Since f is continuously differentiable, f ′ is a continuous function on
[a, b]. So V f exists and is finite.

9
¯
. We have

∫ π

0

f dα =

∫ π

0

x2 d sin x =

∫ π

0

x2 cos x dx

= x2 sinx+ 2x cos x− 2 sin x

∣∣∣∣
π

0

= (π2 · 0 + 2π · (−1) − 2 sin π) − 0 = −2π .





Chapter 8

Sequences and Series of
Functions

8.1 Partial Sums and Pointwise Convergence

1. If the fj and the limit function f are all bounded from zero by a con-
stant c, then the result is true. This is because then

∣∣∣∣
1

fj
− 1

f

∣∣∣∣ =

∣∣∣∣
f − fj

fj · f

∣∣∣∣ ≤
|fj − f |
c2

.

3. Let

PN (x) =
N∑

j=0

(−1)j x4j+2

(2j + 1)!
.

Of course these are the partial sums of the Taylor series for sin x2.
These converge uniformly on compact intervals to sinx2.

5. For an integer N that is greater than 2 define the points

p0 = (0, 0) , p1 = (1/N, 1/N2) , p2 = (2/N, 4/N2) , . . . ,

pN−1 = ((N − 1)/N, (N − 1)2/N2 , pN = (1, 1) .

Now connect p0 to p1 and p1 to p2 and so on to connecting pN−1 to
pN . This gives the graph of a piecewise linear function LN with the
property that

|f(x) − LN (x)| ≤ 2

N
.
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Finally, set

P1 = L1 , P2 = L2 − L1 , P3 = L3 − L2 , . . . .

Then the series ∑

j

Pj

converges to f .

7. Consider the series
∞∑

j=1

x2j−1

(2j − 1)!
.

This is the Taylor series for f(x) = sinx. We can use the Ratio Test
to check that the series converges uniformly on compact sets.

9. If the Taylor series
∑

j ajx
j converges at a point c 6= 0 then, for 0 <

b < |c| and x ∈ [−b, b], we see that

∑

j

∣∣ajx
j
∣∣ =

∑

j

aj

(x
c

)j

cj .

Now the terms ajc
j are bounded by some number M . So the jth

summand of the series is majorized by

M |x/c|j ,
and this gives a convergent geometric series. So the Taylor series con-
verges absolutely and uniformly on [−b, b].

11. Notice that
lim

x→0+
fj(x) = lim

x→0+
x2/j = 0 = fj(0) .

Hence fj is continuous at the origin. It is obviously continuous else-
where.

If x ≤ 0 then fj(x) = 0. If x > 0, then

|fj(x)| =
x2

j
→ 0

as j → ∞. So the fj converge pointwise to the identically 0 function.
However, no matter how large j, fj(j

2) = j. So the convergence is not
uniform.
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13. Let 0 < ε < 1. By the Cauchy condition for series, if j is large enough
(say j > J), then |gj(x)| < ε for all x. Then

∞∑

j=J

|fj(x) · gj(x)| ≤
∞∑

j=J

|fj(x)| .

So the series of products converges absolutely and uniformly.

8.2 More on Uniform Convergence

1. The hypothesis means that the sequence of partial sums converges uni-
formly. But each partial sum is a continuous function. Therefore the
limit function is continuous.

3. If φ satisfies a Lipschitz-1 condition then things will work out nicely.
To illustrate, assume that

|φ(a)− φ(b)| ≤ C · |a− b|

for all real numbers a and b. Let {fj} be a uniformly convergent se-
quence of functions with limit function f . Let ε > 0. Choose J so large
that j > J implies that |fj(x) − f(x)| < ε/C for all x. Then, for such
j,

|φ ◦ fj(x) − φ ◦ f(x)| ≤ C|fj(x)− f(x)| < C · ε
C

= ε .

So the φ ◦ fj converge uniformly.

5. Let

fj(x) = 1 − xj

for j = 1, 2, . . . . Then plainly

f1(x) ≤ f2(x) ≤ · · · .

Finally,

lim
j→∞

fj(x) =

{
1 if 0 ≤ x < 1
0 if x = 1 .

So the limit function is discontinuous.



60 CHAPTER 8. SEQUENCES AND SERIES OF FUNCTIONS

* 11. Let {qj} be an enumeration of the rationals. For each positive integer
j, define a function ϕj with these properties

• ϕj(x) = 0 for x ≤ qj − 10−j or x ≥ qj + 10−j .

• ϕj(qj) = j.

• ϕj is piecewise linear.

Define

Fk(x) =
k∑

m=1

k · ϕm(x) .

Then it is clear that Fk(qj) → ∞ as k → ∞ for each fixed qj. It is also
clear that

{x : some ϕj(x) is not 0}
has length

2 · 10−1 + 2 · 10−2 + · · · =
2

9
.

So, for the complementary set of real numbers, the Fk will remain
bounded. This will include uncountably many irrationals.

8.3 Series of Functions

1. Let ε > 0. For each x ∈ [0, 1], choose jx large enough that

|f(x) − fjx(x)| < ε . (∗)

In fact, by the continuity of f and fjx , the inequality (∗) will persist
on an interval Ix = (x− δx, x+ δx). The intervals Ix cover the compact
interval [0, 1]. So there is a finite subcover

Ix1
, Ix2

, . . . , Ixk
.

Let J = max{jx1
, jx2

, . . . , jxk
}. It follows now that, if j > J and

x ∈ [0, 1], then x ∈ Ij`
for some ` so that

|f(x) − fj(x)| ≤ |f(x) − fj`
(x)| < ε .

Therefore the fj converge to f uniformly.
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3. We know that

ex =
∞∑

j=0

xj

j!
.

Therefore, for any j,
ex ≥ cj · xj . (?)

If p(x) = a0 + a1x+ a2x
2 + · · · akx

k, then pick j much larger than k. It
follows then from (?) that, for N sufficiently large and x > N ,

ex > |p(x)| .

5. Refer to Proposition 3.30. Let aj = sin j and bj = 1/j. We calculate
that

sin(1/2 + j) = sin(1/2) cos j + cos(1/2) sin j

and
sin(1/2 − j) = sin(1/2) cos j − cos(1/2) sin j .

It follows that

sin(1/2 + j) − sin(1/2 − j) = 2 cos(1/2) sin j

hence

sin j =
sin(1/2 + j) − sin(1/2 − j)

2 cos(1/2)
.

As a result,

AN =
N∑

j=1

sin(1/2 + j) − sin(1/2 − j)

2 cos(1/2)
=

sin(1/2 +N) − sin(1/2)

2 cos(1/2)
.

We conclude that

|AN | ≤
1

cos(1/2)
,

an estimate which is independent of N .

We also observe that b1 ≥ b2 ≥ · · · and bj → 0. As a result, Abel’s
Convergence Test (Theorem 3.31) applies and the series

∑

j

sin j

j

converges.
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7. Let ε > 0. There is a J > 0 so that, if k > j > J , then

k∑

`=j

g`(x) < ε for all x .

But then it follows that
∑

` = jkf` < ε for all x .

So the series
∑

` f` converges uniformly.

9. The partial sums are continuous functions, and they converge uni-
formly. Therefore f is continuous.

8.4 The Weierstrass Approximation Theorem

1. First suppose that f is a polynomial. If it is the case that
∫ b

a

f(x) · p(x) dx = 0

for every polynomial p, then in particular
∫ b

a

f(x) · f(x) dx = 0 .

Since the integrand here is continuous and nonnegative, we must con-
clude that f ≡ 0.

Now let f be an arbitrary continuous function that satisfies
∫ b

a

f(x) · p(x) dx = 0

for every polynomial p. Let ε > 0. By the Weierstrass Approximation
Theorem, select a polynomial q so that

|f(x) − q(x)| < ε

for every x ∈ [a, b]. Then

0 =

∫ b

a

f(x)·p(x) dx =

∫ b

a

[f(x)−q(x)]·p(x) dx+
∫ b

a

q(x)·p(x) dx ≡ I+II



8.4. THE WEIERSTRASS APPROXIMATION THEOREM 63

for all polynomials p. We conclude that
∣∣∣∣
∫ b

a

q(x)p(x) dx

∣∣∣∣ ≤ ε · (b− a) · max
[a,b]

|p| .

Since p is any polynomial, we may take p = q. Thus
∣∣∣∣
∫ b

a

q2(x) dx

∣∣∣∣ ≤ ε · (b− a) · max
[a,b]

|q| . (∗)

If ε > 0 is sufficiently small, line (∗) is impossible unless q ≡ 0. But
this implies that f ≡ 0.

3. Restrict attention to the interval I = [0, 1]. The uniform limit on I of a
sequence of polynomials of degree at most 10 will itself be a polynomial
of degree at most 10. That rules out most continuous functions.

5. It would be impossible to approximate f(x) = 100x by such polynomi-
als.

7. Suppose that f is continuously differentiable on the interval I = [0, 1].
Let ε > 0. Apply the usual Weierstrass Approximation Theorem to f ′

on I . So we obtain a polynomial p such that

|f ′(x)− p(x)| < ε

for all x ∈ I . Now define

P (x) = f(0) +

∫ x

0

p(t) dt .

It follows that

|f(x) − P (x)| = |f(0) +

∫ x

0

f ′(t) dt− [P (0) +

∫ x

0

p(t) dt]|

≤
∫ x

0

|f ′(t) − p(t)| dt
< ε .

So we have produce a polynomial P such that

|f(x) − P (x)| < ε

and
|f ′(x) − P ′(x)| < ε

for all x ∈ I .
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* 9. Imitate the solution of Exercise 6 of Section 8.2.

* 11. Let f be a continuous function on the square

S = {(x, y) : x ∈ [0, 1], y ∈ [0, 1]} .

Let ε > 0. Then there is a polynomial

p(x, y) = a0,0 + a1,0x+ a0,1y + a2,0x
2 + a0,2y

2 + a1,1xy + · · · + aj,kx
jyk

such that
|f(x, y)− p(x, y)| < ε

for all (x, y) ∈ S.

We shall not prove this result, but just make the following remark.
If one can prove that a continuous function f(x, y) on S can be well
approximated by a product ϕ(x) · ψ(y) of continuous functions of one
variable, then the two-variable Weierstrass Approximation Theorem
will follow directly from the one-variable version.



Chapter 9

Elementary Transcendental
Functions

9.1 Power Series

1. Let f, g be real analytic functions such that the composition f ◦g makes
sense. In order to show that f ◦ g is real analytic we need to show that
for each x0 ∈ dom g, there exist δ > 0 and C and R > 0 such that for
all x ∈ [x0 − δ, x0 + δ],

∣∣∣∣
(f ◦ g)(k)(x)

k!

∣∣∣∣ ≤ C
1

Rk
.

(See the remark at the end of Section 10.2 in the text.) This will show
(see Exercise 8) that the power series of f ◦ g at x0 converges f ◦ g.

We have that

dk

dxk
(f ◦ g) =

∑ k!

i!j! · · ·h!
dm

dxm
f ·
(
g′

1!

)i(
g′′

2!

)j

· · ·
(
g(`)

`!

)h

,

where m = i+j+ · · ·+h and the sum is taken over all integer solutions
of the equation

i+ 2j + · · · + `h = k.

This formula is the formula for the kth derivative of a composite func-
tion. Now using the estimate

|f (k)(x)| ≤ C · k!
Rk

,
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valid for all real analytic functions with suitable constants C and R,
we have

| d
k

dxk
(f ◦ g)(x)| ≤ Ck+1 ·

∑ k!

i!j! · · ·h! ·
m!

Rm
· 1

Ri

1

R2j
· · · 1

R`h

≤ Ck+1 ·
∑ k!

i!j! · · ·h! ·
m!

R2m

= Ck+1 k!

R2k
,

which implies that f ◦ g is real analytic.

3. The series on the right certainly converges. Simply multiply the given
equation on both sides by 1 − β.

5. Guess a solution of the form y =
∑∞

j=0 ajx
j. Substitute this guess into

the differential equation to obtain

∞∑

j=1

jajx
j−1 +

∞∑

j=0

ajx
j = x .

Now adjust the index of summation in the first series to arrive at

∞∑

j=0

(j + 1)aj+1x
j +

∞∑

j=0

ajx
j = x .

We can combine the two series on the lefthand side to find that
∞∑

j=0

[(j + 1)aj+1 + aj]x
j = x .

Comparing the left and right sides, we find that

1 · a1 + a0 = 0

2 · a2 + a1 = 1

(j + 1)aj+1 + aj = 0 for j ≥ 2 .

If we set a0 = C , an arbitrary constant, then we find that

a1 = −C
a2 = (1 + C)/2

aj+1 = −aj/(j + 1) for j ≥ 2 .
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We write out a few more terms:

a3 = −(1 + C)/3!

a4 = +(1 + C)/4!

In sum, the solution we have found is

C(1 − x) + (1 + C) · (x2/2 − x3/3! + x4/4! − + · · · )
= −1 + x+ (1 + C) · (1 − x+ x2/2 − x3/3! + x4/4! −+ · · · )
= −1 + x+ (1 + C)e−x .

This solution is certainly real analytic.

* 7. Suppose that the zero set Z of the analytic function has an accu-
mulation point a in the interval. In fact let us write zj ∈ Z and
zj → a. Consider the power series expansion of f about a. Say that it
is
∑∞

j=0 αj(x− a)j. Since f(a) = 0, we may conclude that α0 = 0. But

f ′(a) = lim
b→a

f(b) − f(a)

b− a
= lim

j→∞

f(zj) − f(a)

zj − a
= lim

j→∞

0 − 0

zj − a
= 0 .

Hence α1 = f ′(a) = 0. In like manner, we can show iteratively that
α2 = 0, α3 = 0, etc. So the function is identically 0.

9.2 More on Power Series: Convergence Is-

sues

1. We estimate the remainder term:

|Rk,a(x)| =

∣∣∣∣
∫ x

a

f (k+1)(t)
(x− t)k

k!
dt

∣∣∣∣ ≤
∫ x

a

C · (k + 1)!

Rk+1
· |x− t|k

k!
dt .

We assume that x ∈ (a − R, a + R). So |x − t|/R ≡ γ < 1. Thus we
can estimate the last line by

∫ x

a

C(k + 1)γk dt ≤ C

R
(k + 1)γk .
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We conclude that
∣∣∣∣∣f(x) −

k∑

j=0

f (j)(a)
(x− a)j

j!

∣∣∣∣∣ = |Rk,a(x)| ≤
C

R
(k + 1)γk .

This of course tends to 0 as k → ∞.

3. The series
∑

j x
j converges on (−1, 1).

The series
∑

j x
j/j converges on [−1, 1).

The series
∑

j(−x)j/j converges on (−1, 1].

The series
∑

j x
j/j2 converges on [−1, 1].

5. We apply the Root Test to the series

∞∑

j=0

aj

j + 1
(x− c)j+1 (∗)

to find that

lim
j→∞

∣∣∣∣
aj

j + 1
(x− c)j+1

∣∣∣∣
1/j

= lim
j→∞

|aj(x− c)j|1/j .

This shows that the series

∞∑

j=0

aj

j + 1
(x− c)j+1

has the same radius of convergence as

∞∑

j=0

aj(x− c)j .

Of course the derivative of F equals f just by term-by-term differenti-
ation.

7. Since all the derivatives are positive, all the coefficients of the Taylor
series expansion are positive. We write

f(x) =
k∑

j=0

f (j)(a)
(x− a)j

j!
+ Rk,a(x)
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hence
k∑

j=0

f (j)(a)
(x− a)j

j!
= f(x) −Rk,a(x) .

But, since all the derivatives of f are positive, the remainder term is
positive. So the last line implies

k∑

j=0

f (j)(a)
(x− a)j

j!
< f(x) .

So we have the partial sum of the power series expansion on the left,
with all positive terms as long as x > a, and it is bounded above by
f(x), independent of k. This implies that the power series converges
at x. And it converges to f . Thus the function f is real analytic.

9. By Exercise 8 of Section 9.1, the function is infintely differentiable on
R and all the derivatives at the origin are 0. Thus the power series
expansion about the origin is

∞∑

j=0

0 · xj .

This of course converges to 0 at every x. So it does not converge to h.

9.3 The Exponential and Trigonometric Func-

tions

1. We know that
sin(Sin−1x) = x

so that, by the Chain Rule,

cos(Sin−1x) · (Sin−1)′(x) = 1 .

As a result, √
1 − x2 · (Sin−1)′(x) = 1 .

Therefore

(Sin−1)′(x) =
1√

1 − x2
.
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3. We know that

sin 2x = 2x− 8x3

3!
+

32x5

5!
−+ · · · .

And

2 sin x cos x = 2 ·
(
x− x3

3!
+
x5

5!
− + · · ·

)

·
(

1 − x2

2!
+
x4

4!
− + · · ·

)
.

And now it is just a matter of matching up monomials to see that the
identity is true.

7. For part (a), first observe that ex is obviously positive when x ≥ 0.
To treat the case of x < 0, simply note that (using power series) that
ex · e−x = 1. Then, when x < 0,

ex =
1

e−x
> 0 .

For part (b), simply plug 0 into the power series.

For part (c), just differentiate the power series term by term.

9. We have

cos 4x = cos2 2x− sin2 2x = (cos2 x− sin2 x)2 − (2 sinx cos x)2 .

11. For part (a), notice that

sin(s+ t) =
ei(s+t) − e−i(s+t)

2i
=
eiseit − e−ise−it

2i
.

On the other hand,

sin s cos t+ cos s sin t =
eis − e−is

2i
· e

it + e−it

2
+
eis + e−is

2
· e

it − e−it

2i

=
eiseit + eise−it − e−iseit − e−ise−it

4i

+
eisεit − eise−it + e−iseit − e−ise−it

4i

=
eiseit − e−ise−it

2i
.
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In conclusion,

sin(s+ t) = sinx cos t+ cos s sin t .

Part (b) is proved similarly.

For (c), we calculate

cos2 s− sin2 s =

(
eis + e−is

2

)2

−
(
eis − e−is

2i

)2

=
e2is + 2 + e−2is

4
− e2is − 2 + e−2is

−4

=
e2is + e−2is

2
= cos 2s .

Part (d) is proved similarly.

To prove part (e), we note that

sin(−s) =
ei(−s) − ei(−−s)

2i
= −e

is − e−is

2i
= − sin s .

Part (f) is proved similarly.

Part (g) is proved by direct differentiation.

9.4 Logarithms and Powers of Real Numbers

1. One could do this problem by applying Stirling’s formula to j!. A more
elementary argument is this:

Notice that

j! ≥ (j/2) · (j/2) · · · · · (j/2)︸ ︷︷ ︸
j/2 times

·[j/2] · ([j/2] − 1) · · · · · 3 · 2 · 1 .

Hence

jj/2

j!
≤ 2j/2

[j/2] · ([j/2] − 1) · · · · · 3 · 2 · 1 ≤ 2· 2

[j/2]
· 2

[j/2] − 1
·1·1·· · ··1 → 0

as j → ∞.
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3. A polynomial of degree k differentiates to 0 after k+1 differentiations.
By contrast, all the derivatives of log x are nonvanishing.

The logarithm function grows more slowly than any nonconstant
polynomial.

The logarithm function only has one zero, but it is not a degree-one
polynomial.

The logarithm function does not have the entire real line as its
domain.

5. It is convenient to use the notation exp to denote the exponential func-
tion. We know that

(lnx)′ =
1

exp′(lnx)
=

1

x
.

That is part (a).

It follows from part (a) that the logarithm function is strictly in-
creasing.

We know that e0 = 1 hence ln 1 = 0.

We know that e1 = e hence ln e = 1.

The graph of y = ex is asymptotic to the negative real axis, so part
(e) follows.

We know that
eln s+ln t = eln s · eln t = s · t .

Taking logarithms of both sides gives

ln s+ ln t = ln(s · t) .

We see that

ln t+ ln(1/t) = ln(t · 1/t) = ln 1 = 0

hence
ln(1/t) = − ln t .

Therefore

ln(s/t) = ln(s · (1/t)) = ln s+ ln(1/t) = ln s− ln t .
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Differential Equations

10.1 Picard’s Existence and Uniqueness The-

orem

1. Note that x0 = 0 and y0 = 1. We follow Picard’s technique to calculate
that

y1(x) = 1 +

∫ x

0

1 + t dt = 1 + x+
x2

2
,

y2(x) = 1 +

∫ x

0

1 + t+
t2

2
+ 1dt = 1 + x+ x2 +

x3

6
,

y3(x) = 1 +

∫ x

0

1 + t+ t2 +
t3

6
+ t dt = 1 + x+ x2 +

x3

3
+
x4

24
,

y4(x) = 1 +

∫ x

0

1 + t+ t2 +
t3

3
+
t4

24
+ t dt = 1 + x+ x2 +

x3

3
+
x4

12
+

x5

120
.

A pattern emerges. It is clear that these Picard iterates are converging
to

1+x+
2x2

2!
+

2x3

3!
+

2x4

4!
+· · · = −1−x+2

(
1 + x

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)
= −1−x+2ex .

So we have found the solution y = −1 − x + 2ex to our initial value
problem.
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3. With

y =

√
2

3
ln(1 + x2) + C ,

we find that

dy

dx
=

1

2
·
(

2

3
ln(1 + x2) + C

)−1/2

· 2

3
· 1

1 + x2
· 2x

=
2x

3 + 3x2

(
2

3
ln(1 + x2) + C

)−1/2

.

On the other hand,

2x

3y + 3x2y
=

2x

(3 + 3x2)y

=
2x

(3 + 3x2)

(
2

3
ln(1 + x2) + C

)−1/2

.

So the differential equation is satisfied.

For the initial value problem, we solve

2 = y(0) =

√
2

3
ln 1 + C

so C = 4. Thus the particular solution is

y =

√
2

3
ln(1 + x2) + 4 .

5. On the interval [−1, 1] the exponential function is bounded and has
bounded derivative. So the Picard iteration technique applies and the
problem has a solution.

7. If we are given an nth order, linear ordinary differential equation of the
form

any
(n) + an−1y

(n−1) + · + a2y
′′ + a1y

′ + a0y = g(x) ,



10.1. PICARD’S EXISTENCE AND UNIQUENESS THEOREM 75

then this is equivalent to the first order, linear system

y′1 = y2

y′2 = y3

y′3 = y4

· · ·
y′n−1 = yn

y′n = −a0

an
y1 −

a1

an
y2 −

a2

an
y3 − · · · − an−1

an
yn +

g(x)

an
.

We can think of this system as

(y1, y2, . . . , yn)
′ = F (x, y1, y2, . . . , yn)

or, in abbreviated form,

Y ′ = f(x, Y ) .

We impose the usual conditions on F . Then one sees that, if
we accept the idea of integration of vector-valued functions, both the
statement and proof of the Picard Theorem go through just as in the
classical setting. So we can solve vector-valued ordinary differential
equations of first order. Which in turn means that we can solve nth
order, linear equations.

9. Clearly the usual conditions that F be bounded and ∇F be bounded
will do the trick.

* 11. (a) The equations F (x, y) = 〈−y, x〉 and γ′(t) = F (γ(t)) translate to

〈γ′1(t), γ′2(t)〉 = 〈−γ2(t), γ1(t)〉 .

Thus
γ′1(t) = −γ2(t)

and
γ′2(t) = γ1(t) .

Differentiating the first of these equations gives

γ′′1 (t) = −γ′2(t) = −γ1(t)
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or
γ′′1 (t) + γ1(t) = 0 .

This is a familiar equation whose solution set is

γ1(t) = A cos t+B sin t .

Alternatively, we could differentiate the second equation to obtain

γ′′2 (t) = γ′1(t) = −γ2(t) .

This becomes
γ′′2 (t) + γ2(t) = 0 .

It is convenient for us to write the general solution of this equation
as

γ2(t) = −B cos t+ A sin t .

In summary, the curves

γ(t) = (A cos t+B sin t,−B cos t+ A sin t)

satisfy
γ′(t) = F (γ(t)) .

So these are the integral curves.

(b) The equation
γ′(t) = F (γ(t))

leads to
(γ′1(t), γ

′
2(t)) = (γ1(t) + 1, γ2(t) − 2) .

Therefore
γ′1(t) = γ1(t) + 1

and
γ′2(t) = γ2(t)− 2 .

These two equations are easily solved to yield

γ1(t) = −1 + Cet

and
γ2(t) = 2 + Cet .

Thus the integral curves are

γ(t) = (−1 + Cet, 2 + Cet) .
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10.2 Power Series Methods

1. The main point is that the coefficient |x| is not real analytic so we
cannot expect a real analytic solution.

3. Guess a solution of the form y =
∑∞

j=0 ajx
j. Plugging this into the

differential equation yields

∞∑

j=1

jajx
j−1 −

∞∑

j=0

ajx
j+1 = x .

Adjusting the index of summation in both sums gives

∞∑

j=0

(j + 1)aj+1x
j −

∞∑

j=1

aj−1x
j = x .

With a little manipulation this becomes

∞∑

j=1

[
(j + 1)aj+1 − aj−1

]
xj = x− a1 .

Now let a0 = C . From the above we read off that

a0 = C ,

a1 = 0 ,

2a2 − a0 = 1 so that a2 =
C + 1

2
,

3a3 − a1 = 0 so that a3 = 0 ,

4a4 − a2 = 0 so that a4 =
C + 1

4 · 2 ,

5a5 − a3 = 0 so that a5 = 0 ,

6a6 − a4 = 0 so that a6 =
C + 1

6 · 4 · 2 .

The initial condition tells us that C = 2. So we conclude that

y = 2 +
3

1!
· x

2

2
+

3

2!
·
(
x2

2

)2

+
3

3!
·
(
x2

2

)3

+ · · ·

= −1 + 3ex2/2 .
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5. The Method of Power Series: We guess a solution of the form
y =

∑∞
j=0 ajx

j. Plugging this guess into the differential equation yields

∞∑

j=1

jajx
j−1 −

∞∑

j=0

ajx
j = x .

Adjusting the index in the first series yields

∞∑

j=0

(j + 1)aj+1x
j −

∞∑

j=0

ajx
j = x .

A little manipulation now yields

∞∑

j=0

[
(j + 1)aj+1 − aj

]
xj = x .

Now we may calculate the coefficients:

a0 = C ,

a1 − a0 = 0 so that a1 = a0 = C ,

2a2 − a1 = 1 so that a2 =
a1 + 1

2
=
C + 1

2!
,

3a3 − a2 = 0 so that a3 =
a2

3
=
C + 1

3!
,

4a4 − a3 = 0 so that a4 =
a3

4
=
C + 1

4!
.

The pattern is now clear. We see that

y = C + Cx+
C + 1

2!
x2 +

C + 1

3!
x3 + · · ·

= (−1 − x) + (C + 1) ·
(

1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)

= −1 − x+ (C + 1)ex .

Taking the initial condition into account, we find that our solution is

y = −1 − x+ 2ex .
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Picard’s Method: We write

y1 = 1 +

∫ x

0

1 + t dt

= 1 + x+
x2

2

y2 = 1 +

∫ x

0

1 + t+
t2

2
+ t dt

= 1 + x+ x2 +
x3

6

y3 = 1 +

∫ x

0

1 + t+ t2 +
t3

6
+ t dt

= 1 + x+ x2 +
x3

3
+
x4

24

y4 = 1 +

∫ x

0

1 + t+ t2 +
t3

3
+
t4

24
+ t dt

= 1 + x+ x2 +
x3

3
+
x4

12
+

x5

120

The pattern is now clear, and we see that the solution generated by
Picard is

y = −1 − x+ 2

(
1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)
= −1 − x+ 2ex .

We see that the solutions generated by the two methods coincide.

7. We guess a solution of the form y =
∑∞

j=0 ajx
j. Substituting this into

the differential equation yields

∞∑

j=2

j(j − 1)ajx
j−2 −

∞∑

j=0

ajx
j = x2 .
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Adjusting the index of summation in the first sum gives

∞∑

j=0

(j + 2)(j + 1)aj+2x
j −

∞∑

j=0

ajx
j = x2

or
∞∑

j=0

[
(j + 2)(j + 1)aj+2 − aj

]
xj = x2 .

Now we may calculate the coefficients of the power series. We see that

a0 = C ,

a1 = D ,

2a− 2 − a0 = 0 so that a2 =
a0

2
=
C

2
,

6a3 − a1 = 0 so that a3 =
a1

6
=
D

6
,

12a4 − a2 = 1 so that a4 =
1 + a2

12
=
C + 2

24
,

20a5 − a3 = 0 so that a5 =
a3

20
=

D

120
,

30a6 − a4 = 0 so that a6 =
a4

30
=
C + 2

720
.

We see that, if D = 0, then we get a power series solution with only
even exponents.

9. We could use power series methods, but we have also learned that
separation of variables is a useful technique. We rewrite the equation
as

1

y

dy

dx
dx = xdx .

Integrating both sides gives

ln y =
x2

2
+ C .

Exponentiating yields
y = eC · ex2/2

as the general solution.
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11. We guess a solution of the form y =
∑∞

j=0 ajx
j. Substituting this guess

into the differential equation yields

∞∑

j=2

j(j − 1)ajx
j−2 +

∞∑

j=0

4ajx
j = 0 .

Adjusting the index of summation in the first sum gives

∞∑

j=0

(j + 2)(j + 1)aj+2x
j +

∞∑

j=0

4ajx
j = .

Some manipulation now gives

∞∑

j=0

[
(j + 2)(j + 1)aj+2 + 4aj

]
xj = 0 .

This yields the simple relation

(j + 2)(j + 1)aj+2 + 4aj = 0

for all j.

Setting a0 = C and a1 = D we now calculate that

2a2 + 4a0 = 0 so that a2 = −4a0

2
=

−4C

2
,

6a3 + 4a1 = 0 so that a3 = −2

3
a1 = −2D

3
,

12a4 + 4a2 = 0 so that a4 =
−4a2

12
=

4C

6
,

20a5 + 4a3 = 0 so that a5 =
−a3

5
=

2D

15
.

We find then that

y = C

(
1 − (2x)2

2!
+

(2x)4

4!
− + · · ·+

)

+
D

2

(
2x− (2x)3

3!
+

(2x)5

5!
− + · · ·

)

= C cos 2x + (D/2) sin 2x .
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Chapter 11

Introduction to Harmonic
Analysis

11.1 The Idea of Harmonic Analysis

1. We know that

cos2 x =
1 + cos 2x

2
.

Therefore

cos4 θ = (cos2 θ)2

=

(
1 + cos 2θ

2

)2

=
1 + 2cos 2θ + cos2 2θ

4

=
1 + 2 cos 2θ + (1 + cos 4θ)/2

4

=
1

4
+

cos 2θ

2
+

1

8
+

cos 4θ

8

=
3

8
+

1

2
cos 2θ +

1

8
cos 4θ

=
3

8
+

1

4
(eiθ + e−iθ) +

1

16
(e4iθ + e−4iθ) .

This is the Fourier expansion for cos4 θ.

83
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11.2 The Elements of Fourier Series

1.

f̂(0) =
1

2π

∫ π

−π

f(x) dx =
1

2π

∫ π
2

0

1dx =
1

2π
· π
2

=
1

4

and for n 6= 0, then

f̂(n) =
1

2π

∫ π

−π

f(x)e−inxdx

=
1

2π

∫ π
2

0

e−inxdx

=
1

2πin

[
1 − e−

iπn
2

]

For n > 0, n ∈ Z, we have that

f̂ (n)einx + f̂(−n)e−inx =
1

2πin

[
1 − e−

iπn
2

]
einx − 1

2πin

[
1 − e

iπn
2

]
e−inx

=
1

2πin

[
einx − e−inx + ein(π

2
−x) − ein(x−π

2 )
]

=
1

πn

[
sin(nx)− sin

(
n
(
x− π

2

))]

=
1

πn

[
sin(nx)− sin(nx) cos

(π
2
n
)

+ sin
(π

2
n
)

cos(nx)
]

=
1

πn

[(
1 − cos

(π
2
n
))

sin(nx) + sin
(π

2
n
)

cos(nx)
]

So the Fourier Series for f(x) is:

1

4
+

1

π

∞∑

n=1

1

n

(
1 − cos

(π
2
n
))

sin(nx) +
1

π

∞∑

n=1

1

n
sin
(π

2
n
)

cos(nx)

=
1

4
+

1

π

∞∑

n=1

1

n

(
1 − cos

(π
2
n
))

sin(nx) +
1

π

∞∑

n=1

1

2n − 1
(−1)n+1 cos(nx)

3. (a) f(x) = π is its own Fourier Series.
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(b)

f(x) = sinx =
eix − e−ix

2i

(c)

f(x) = cos x =
eix + e−ix

2

(d)

f(x) = π + sinx+ cosx

= π +
eix − e−ix

2i
+
eix + e−ix

2

= π +

(
1

2
+

1

2i

)
eix +

(
1

2
− 1

2i

)
e−ix

=
1

2
(1 + i)e−ix + π +

1

2
(1 − i)eix

5. The Fourier series of an even real-valued function, say f(x), involves
only cosines. So the Fourier series for such a function has the form

a0

2
+

∞∑

n=1

an cos(nx).

Also, for m,n ∈ Z,

1

2π

∫ 2π

0

cos(mx) cos(nx)dx = δmn

where

δmn =

{
1 , m = n
0 , m 6= n

is the Kronecker delta. Therefore, since

ak =
1

2π

∫ 2π

0

f(x) cos(nx)dx

the identities are the Fourier series for the functions sin2 x and cos2 x.
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7. Set

DN (t) =
N∑

n=−N

eint .

Then
(eit − 1) ·DN (t)

telescopes so that

(eit − 1) ·DN (t) = ei(N+1)t − e−iNt .

Multiplying both sides by e−it/2 yields

(eit/2 − e−it/2) ·DN (t) = ei(N+1/2)t − e−i(N+1/2)t .

Now divide out the factor on the left to obtain that

DN (t) =
(ei(N+1/2)t − e−i(N+1/2)t)/(2i)

(eit/2 − e−it/2)/(2i)
=

sin(N + 1/2)t

sin(1/2)t
.

9. If we let KN denote the kernel of σN , then we find that

KN (x) =
1

N + 1

N∑

j=0

Djf(x)

=
1

N + 1

N∑

j=0

sin
[
j + 1

2

]
x

sin x
2

=
1

N + 1

N∑

j=0

cos jx− cos(j + 1)x

2 sin2 x
2

(since sin a sin b = 1
2
[cos(a−b)−cos(a+b)]). Of course the sum collapses

and we find that

KN (x) =
1

N + 1

1 − cos(N + 1)x

2 sin2 x
2

=
1

N + 1

1 − [cos2( (N+1)x
2

) − sin2( (N+1)x
2

)]

2 sin2 x
2

=
1

N + 1

2 sin2( (N+1)x
2

)

2 sin2 x
2

=
1

N + 1

(
sin( (N+1)x

2
)

sin x
2

)2

.
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11. We see that

1

2π

∫ 2π

0

|KN (t)| dt =
1

2π

∫ 2π

0

KN (t) dt

=
1

2π

∫ 2π

0

1

N + 1

N∑

j=0

Dj(t) dt

=
1

N + 1

N∑

j=0

1

2π

∫ 2π

0

Dj(t) dt

=
1

N + 1
(N + 1) = 1 .

11.3 An Introduction to the Fourier Trans-

form

1. We have

(−x)5 sin(−x) = x5 sinx so this function is even;

(−x)2 sin 2(−x) = −x2 sin 2x so this function is odd;

e−x 6= ex and e−x 6= −ex so this function is neither even nor odd;

sin((−x)3) = − sinx3 so this function is odd;

sin(−x)2 = sinx2 so this function is even;

cos(−x+ (−x)2) = cos(−x+ x2) 6= cos(x+ x2)

and cos(−x+ (−x)2) = cos(−x+ x2) 6= − cos(x+ x2)

so this function is neither even nor odd;

(−x)+(−x)2+(−x)3 6= x+x2+x3 and (−x)+(−x)2+(−x)3 6= −(x+x2+x3)

so this function is neither even nor odd;

ln
1 − x

1 + x
= − ln

1 + x

1 − x
so this function is odd .
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3. We calculate that

f̂(ξ) =

∫ ∞

−∞

f(t)eitξ dt

=

∫ 1

0

teitξ dt

=
t

iξ
eitξ

∣∣∣∣
1

0

−
∫ 1

0

1

iξ
eitξ dt

=
1

iξ
eiξ −

(
1

(iξ)2
eitξ

)∣∣∣∣
1

0

=
1

iξ
eiξ +

1

ξ2
(eiξ − 1)

= eiξ

(
− i

ξ
+

1

ξ2

)
− 1

ξ2
.

5. Now

ĥ(ξ) =

∫

R

(f ∗ g)(x)e−2πiξxdx =

∫

R

∫

R

f(x− y)g(y)dye−2πiξxdx.

But by Tonelli’s Theorem and a change of variable,

∫

R

∫

R

|f(x− y)| |g(y)| dydx =

∫

R

|g(y)|
∫

R

|f(x− y)| dxdy

=

(∫

R

|g(y)| dy
)(∫

R

|f(z)| dz
)
<∞

since f and g are integrable. Therefore, we can interchange the order
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of integration by Fubini’s Theorem, to obtain:

ĥ(ξ) =

∫

R

∫

R

f(x− y)g(y)dye−2πiξxdx

=

∫

R

∫

R

f(x− y)e−2πiξ(x−y)g(y)e−2πiξydxdy

=

∫

R

g(y)e−2πiξy

∫

R

f(x− y)e−2πiξ(x−y)dxdy

=

∫

R

g(y)e−2πiξy

∫

R

f(z)e−2πiξzdzdy

=

∫

R

g(y)e−2πiξyf̂ (ξ)dy

= f̂(ξ)ĝ(ξ)

9. Certainly we see that e−x2/2 is an eigenfunction of the Fourier transform
with eigenvalue

√
2π. If we let F denote the Fourier transform, then

F4 = 4π2 · I, where I is the identity operator. So in fact there are four
eigenvalues and four eigenfunctions.

11.4 Fourier Methods and Differential Equa-

tions

1. (a) As in the text, only the case λ > 0 is of interest. Since y(0) = 0,
we conclude that

y(x) = A sin
√
λx .

Now, because y(π/2) = 0, we see that sin
√
λπ/2 = 0. As a

result, √
λπ/2 = nπ

for some positive integer n so that

λ = 4n2 .

The eigenfunctions are then

yn(x) = A sin 2nx .



90 CHAPTER 11. INTRODUCTION TO HARMONIC ANALYSIS

(c) As in the text, only the case λ > 0 is of interest. Since y(0) = 0,
we conclude that

y(x) = A sin
√
λx .

Now, because y(1) = 0, we see that sin
√
λ · 1 = 0. As a result,

√
λ · 1 = nπ

for some positive integer n so that

λ = n2π2 .

The eigenfunctions are then

yn(x) = A sinnπx .

(d) As in the text, only the case λ > 0 is of interest. Since y(0) = 0,
we conclude that

y(x) = A sin
√
λx .

Now, because y(L) = 0, we see that sin
√
λ ·L = 0. As a result,

√
λ · L = nπ

for some positive integer n so that

λ = n2π2/L2 .

The eigenfunctions are then

yn(x) = A sin(nπ/L)x .

3. (b) Setting t = 0, we see that the bj are the coefficients for the sine
series of f(x) = (1/π)x(π − x). Thus

bj =
2

π

∫ π

0

1

π
x(π−x) sin jx dx =

2

π

∫

π

x sin jx dx− 2

π2

∫ π

0

x2 sin jx dx

=
4

π2j3
[−1 + (−1)j ] .
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11.5 The Heat Equation

1. The Fourier series solution to a2wxx(x, t) = wt(x, t) satisfying the
boundary conditionsw(0, t) = w(π, t) = 0 isW (x, t) =

∑∞
j=1 bje

−j2a2t sin jx.
This can be seen by substituting w(x, t) = u(x)v(t) and separating
variables. An easier way is to make the change of variables τ = a2t in
the heat equation to obtain wxx(x, τ ) = wτ (x, τ ) having the solution
W (x, τ ) =

∑∞
j=1 bje

−j2τ sin jx obtained in the text, and then express
the solution in terms of t.

Now let w(x, t) = W (x, t) + g(x), where g(x) = w1 + 1
π
(w2 − w1)x.

By the superposition principal, w is also a solution to the heat equa-
tion and, since W (0, t) = W (π, t) = 0, w(x, t) satisfies the boundary
conditions w(0, t) = g(0) = w1, w(π, t) = g(π) = w2.

The initial temperature distribution, w(x, 0) = f(x), determines the
values of the coefficients bj as follows. Since f(x) =

∑∞
j=1 bj sin jx +

g(x) the coefficients must be chosen so that
∑∞

j=1 bj sin jx = f(x) −
g(x). Consequently, bj = 2

π

∫ π

0
(f(x) − g(x)) sin jxdx, and the solution

is w(x, t) =
∑∞

j=1 bje
−j2a2t sin jx+ g(x).

3. We seek separated solutions to the heat equation: a2wxx = wt, sat-
isfying the boundary conditions wx(0, t) = 0 = wx(π, t). Substitute
w(x, t) = α(x)β(t) to get a2α′′β = αβ ′ or α′′

α
= β′

α2β
. Thus there

is a constant K such that α′′

α
= K = β′

a2β
. That is, α′′ = Kα and

β ′ = Ka2β, so β(t) = CeKa2t. Since the temperature is not expected to
grow exponentially with time we assume K ≤ 0 so α(x) = sin

√
−Kx

or α(x) = cos
√
−Kx or α(x) = C , a constant. The last possibility

corresponds to K = 0.

The boundary conditions require α′(0) = 0 = α′(π). Conse-
quently α(x) = C , a constant, or α(x) = cos

√
−Kx with K cho-

sen so that α′(0) = −
√
K sin

√
−Kπ = 0. Therefore, the eigen-

values are K = −n2, n = 0, 1, 2, · · · . The separated solutions are
w(x, t) = e−n2a2t cos nx. Therefore, the series solution is w(x, t) =
a0

2
+
∑∞

j=1 aje
−j2a2t cos jx where the coefficients aj satisfy w(x, 0) =

a0

2
+
∑∞

j=1 aj cos jx = f(x). That is, aj = 2
π

∫ π

0
f(x) cos jxdx.

9. Let the circle C be centered at (x0, y0) (Cartesian coordinates) with
radius R. The function u(x, y) = w(x0 + x, y0 + y) is harmonic on
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the disk centered at the origin of radius R. According to the Poisson
integral formula for this disk (Exercise 8), u’s value at the center of the
disk: (0, θ), (polar coordinates) is given by u(0, θ) = 1

2π

∫ π

−π
u(R, φ)dφ.

In terms of the original function w this formula can be expressed in the
following form.

w(x0, y0) =
1

2πR

∫

−pi

πw(x0 +R cos φ, y0 +R sinφ)Rdφ.
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Chapter 12

Functions of Several Variables

12.1 A New Look at the Basic Concepts of

Analysis

1. Let s, t,u ∈ Rk. Assume that these three points are colinear. By
rotating and translating the line in space, we may as well suppose that
the three points lie on the positive real axis.

Then the classical Triangle Inequality tells us that

|s− t| = |(s− u) + (u − t)| ≤ |s− u| + |u− t| = ‖s− u‖ + |u− t‖ .

Now suppose that s, t,u are in general position—not colinear. Imag-
ine that the points are as shown in Figure 12.1.

s t

u

u
~

Figure 12.1: The triangle inequality.
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Project the point u to a point ũ on the line through s and t. Then we
know, by the result of the first paragraph, that

‖s − t‖ ≤ ‖s − ũ‖ + ‖ũ − t‖ .

But this in turn is

≤ ‖s− u‖ + ‖u− t‖ .

3. Just as an instance, let us prove that

lim
x→P

[f(x) + g(x)] = lim
x→P

f(x) + lim
x→P

g(x) .

Let ε > 0. Choose δ1 > 0 so that, when ‖x − P‖ < δ1, then |f(x) −
f(P)| < ε/2. Likewise, choose δ2 > 0 so that, when ‖x−P‖ < δ2, then
|g(x) − g(P)| < ε/2. Let δ = min{δ1, δ2}. Then, for ‖x − P‖ < δ, we
have

|[f(x)+g(x)]−[f(P)+g(P)]| ≤ |f(x)−f(P)|+|g(x)−g(P)| < ε

2
+
ε

2
= ε .

That establishes the result.

5. We say that fj(x) → f(x) uniformly if, given ε > 0, there is a J so
large that, when j ≥ J , then

|fj(x)− f(x)| < ε

for all x. Now let us prove that, if the fj are continuous on Rk, then
so is f .

Let P ∈ Rk and ε > 0. Choose J so large that, if j ≥ J , then
|fj(x) − f(x)| < ε/3 for all x. Choose δ > 0 so that, if |x − P| < δ,
then |fJ (x)− fJ (P)| < ε/3. Then, for such x,

|f(x)− f(P)| ≤ |f(x) − fJ(x)| + |fJ(x) − fJ(P)| + |fJ (P) − f(P)|
<

ε

3
+
ε

3
+
ε

3
= ε .

So f is continuous at P .
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7. We treat the maximum. The minimum is handled similarly.

Let E be compact and let f be a continuous function on E. Let
M = sup{f(x) : x ∈ E}. Then there is a sequence xj ∈ E such that
f(xj) → M . By compactness, there is a subsequence {xjk

} so that
xjk

→ x0 ∈ E. But then, by continuity, f(xjk
) → f(x0) = M . So f

assumes its maximum value at x0 ∈ E.

9. For j, k integers, let

Ej,k =

{
(x, y) ∈ R2 : (x− j)2 + (y − k)2 ≤ 1

4

}
.

Define
S =

⋃

(j,k)∈Z×Z

Ej,k .

Then each Ej,k is a connected component of S. There are infinitely
many of them.

11. We see that

‖s‖ = ‖(−t) + (s + t)‖ ≤ ‖ − t‖ + ‖s + t‖ = ‖t‖ + ‖s + t‖ .
Therefore

‖s‖ − ‖t‖ ≤ ‖s + t‖ .

12.2 Properties of the Derivative

1. The sum rule says that
[
f(x) + g(x)

]′
= f ′(x) + g′(x) .

The product rule says that
[
f(x) · g(x)

]′
= f ′(x) · g(x) + f(x) · g′(x) .

The quotient rule says that
[
f

g
(x)

]′
=
g(x) · f ′(x) − f(x) · g′(x)

g2(x)

provided that g does not vanish.
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3. We say that f has a second derivative if its first derivative is differen-
tiable, that is

P 7−→ MP(f)

possesses the first derivative. That is, we require

MP+h(f) = MP(f) + LP((M(f))h +RP(M(f)),h) .

Here LP(M(f)) is a linear map from Rk to Rk. Notice that, if we write
ej = (0, . . . , 1, . . . , 0), then

MP+kej
(f) −MP(f) = kLP(M(f))ej +RP

= kLP(M(f))j +RP,

where LP(M(f))j is the jth column of that matrix. Dividing both sides
by k and letting k → 0 we find that

(
∂

∂xj

∂f

∂x1
(P), . . . ,

∂

∂xj

∂f

∂xn
(P),

)
= LP(M(f))j .

Thus,

LP(M(f)) =

(
∂2f

∂xi∂xj
(P)

)k

i,j=1

,

the Hessian matrix of all second partial derivatives.

5. Suppose f(x) = (f1(x), . . . , fn(x)) is differentiable at a point P. Then
for each j

fj(P + h) = fj(P) +Mj(f) · h +RjP(f,h)

with

lim
h−→0

RjP(f,h)

‖h‖ = 0.

Thus

f(P + h) = t(f1(P), . . . , fn(P))

+t(M1P(f) · h, . . . ,MnP · h)

+t(R1P(f,h), . . . , RnP(f,h))

= f(P) + MP + RP(f,h)
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where

lim
h→0

‖RP(f,h)‖
‖h‖ ≤

n∑

j=1

lim
h→0

|RjP(f,h)|
‖h‖

= 0

and MP is an n ×m matrix. The converse is obvious.

7. If Mt is the zero matrix for every t ∈ B(P, r), then every partial
derivative is equal to 0. If t is an arbitrary point of the ball, then

f(t) − f(0) =

∫ tk

0

∂f

∂tk
(t1, t2, t3, . . . , tk−1, s) ds

+

∫ tk−1

0

∂f

∂tk−1
(t1, t2, t3, . . . , tk−2, s, 0) ds

+ · · · +
∫ t1

0

∂f

∂t1
(s, 0, 0, . . . , 0) ds .

Since the partial derivatives are all 0, each of the integrals on the right
is equal to 0. Hence f(t) = f(0) for any t in the ball. In other words,
f is constant.

9. Write

f(x) = (f1(x), f2(x), . . . , fm(x)) .

The rows of the new matrix MP are simply the derivatives, as defined
in the text, of the functions fj , j = 1, 2, . . . , m.

* 13. It is enough to show that if f : [0, 1] → R2 is continuous and is dif-
ferentiable on (0, 1) then it does not necessarily follow that there is a
ξ ∈ (0, 1) such that

f ′(ξ) =
f(1) − f(0)

1 − 0
.

As an example, we take f(t) = (t2 + t, t2− t3). Then f(1)−f(0)− (2, 0)
and f ′(t) = (2t+1, 2t−3t2). Clearly there is no value of t in (0, 1) such
that (2t+ 1, 2t − 3t2) = (2, 0).
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12.3 The Inverse and Implicit Function The-

orems

1. The image of an open set under a homeomorphism is open.

3. If P = (x, ϕ(x)) ∈ U , then v = 〈−ϕ′(x), 1〉 is a normal vector to U at
P . Consider the mapping

T : (x, t) 7−→ 〈x, ϕ(x)〉 + t〈−ϕ′(x), 1〉 = 〈x− tϕ′(x), ϕ(x) + t〉

for x in the domain of ϕ and t small. We see that we are mapping each
point P to a point t units along the normal from P .

We calculate the Jacobian matrix determinant of T at a point (x, t):

det

(
1 − tϕ′′(x) ϕ′(x)
−ϕ′(x) 1

)
= (1 − tϕ′′(x)) + [ϕ′(x)]2 .

Plainly, if t is small, then this Jacobian determinant is positive. So the
inverse function theorem applies and we see that we can recover from
each point Q near U a pair (x, t). That means that P = (x, ϕ(x)) is
the nearest point in U to Q and t is the distance of Q to P .

5. If the logarithm function had two zeros then it would have a local
maximum. And the Implicit Function Theorem does not apply in a
neightborhood of such a maximum. But in fact the derivative of the
logarithm function is always positive, so this situation does not occur.

7. Consider the mapping F : R2 → R2 given by F (x, y) = (x, y3). This
mapping is certainly invertible, but its Jacobian determinant at the
origin is 0.

9. Let p(x) be a polynomial of degree at least 1 in one real variable. Define

G(x, y) = y − p(x) .

At the point (x, 0) we may calculate the partial derivative of G in x.
For most x this will not be zero. So we can solve for x in terms of y.
At y = 0 this gives a root of the polynomial.


